Kopykıtab

Same textbooks, klick away

NCERT Class 12 Maths

Solutions

Exercise 10.4

1. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}$ and $\vec{b}=3 \hat{i}$ $-2 \hat{j}+2 \hat{\boldsymbol{k}}$.
Sol. Given: $\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k} \quad$ and $\quad \vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$.
Therefore, $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -7 & 7 \\ 3 & -2 & 2\end{array}\right|$

$$
\begin{aligned}
& {\left[\because \text { If } \vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} \text { and } \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} ;\right.} \\
& \text { then } \left.\vec{a} \times \vec{b}=\left|\begin{array}{|ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|\right]
\end{aligned}
$$

Expanding along first row,

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\hat{i}\left|\begin{array}{ll}
-7 & 7 \\
-2 & 2
\end{array}\right|-\hat{j}\left|\begin{array}{ll}
1 & 7 \\
3 & 2
\end{array}\right|+\hat{k}\left|\begin{array}{ll}
1 & -7 \\
3 & -2
\end{array}\right| \\
\Rightarrow \quad \vec{a} \times \vec{b} & =\hat{i}(-14+14)-\hat{j}(2-21)+\hat{k}(-2+21)
\end{aligned}
$$

$$
=0 \hat{i}+19 \hat{j}+19 \hat{k}
$$

$\therefore|\vec{a} \times \vec{b}|=\sqrt{0^{2}+(19)^{2}+(19)^{2}}=\sqrt{2(19)^{2}}=\sqrt{2}(19)=19 \sqrt{2}$.
Result: We know that $\vec{n}=\vec{a} \times \vec{b}$ is a vector perpendicular to both the vectors \vec{a} and \vec{b}.
Therefore, a unit vector perpendicular to both the vectors \vec{a} and \vec{b} is

$$
\hat{\boldsymbol{n}}= \pm \frac{\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}}}{|\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}}|} . \quad\left[\because \hat{\mathrm{A}}=\frac{\overrightarrow{\mathrm{A}}}{|\overrightarrow{\mathrm{~A}}|}\right]
$$

2. Find a unit vector perpendicular to each of the vectors

$$
\begin{aligned}
& \vec{a}+\vec{b} \text { and } \vec{a}-\vec{b} \text { where } \vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k} \text { and } \\
& \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k} .
\end{aligned}
$$

Sol. Given: $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$ Adding, $\quad \vec{c}=\vec{a}+\vec{b}=4 \hat{i}+4 \hat{j}+0 \hat{k}$ Subtracting $\quad \vec{d}=\vec{a}-\vec{b}=2 \hat{i}+0 \hat{j}+4 \hat{k}$ Therefore, $\left.\vec{n}=\vec{c} \times \vec{d}=\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 4 & 4 & 0 \\ 2 & 0 & 4\end{array}\right]$ Expanding along first row $=\hat{i}(16-0)-\hat{j}(16-0)+\hat{k}(0-8)$

$$
\begin{aligned}
& \Rightarrow \quad \vec{n}=16 \hat{i}-16 \hat{j}-8 \hat{k} \\
& \therefore|\vec{n}|=\sqrt{(16)^{2}+(-16)^{2}+(-8)^{2}}=\sqrt{256+256+64}=\sqrt{576}=24 .
\end{aligned}
$$

Therefore, a unit vector perpendicular to both \vec{a} and \vec{b} is

$$
\begin{aligned}
\hat{n} & = \pm \frac{\vec{n}}{|\vec{n}|}= \pm \frac{(16 \hat{i}-16 \hat{j}-8 \hat{k})}{24} \\
& = \pm\left(\frac{16}{24} \hat{i}-\frac{16}{24} \hat{j}-\frac{8}{24} \hat{k}\right)= \pm\left(\frac{2}{3} \hat{i}-\frac{2}{3} \hat{j}-\frac{1}{3} \hat{k}\right) .
\end{aligned}
$$

3. If a unit vector \hat{a} makes an angle $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k}, then find θ and hence, the components of $\hat{\boldsymbol{a}}$.

Sol. Let $\hat{a}=x \hat{i}+y \hat{j}+z \hat{k}$ be a unit vector
$\Rightarrow \quad|\hat{a} \quad|=1 \Rightarrow \sqrt{x^{2}+y^{2}+z^{2}}=1$
Squaring both sides, $x^{2}+y^{2}+z^{2}=1$
Given: Angle between vectors \hat{a} and $\hat{i}=\hat{i}+0 \hat{j}+0 \hat{k}$ is $\frac{\pi}{3}$.

$$
\begin{align*}
& \therefore \quad \cos \frac{\pi}{3}=\frac{\hat{a} \cdot \hat{i}}{|\hat{a}||\hat{i}|} \\
& \Rightarrow \quad \frac{1}{2}=\frac{x(1)+y(0)+z(0)}{(1)(1)} \quad \text { or } \quad \frac{1}{2}=x \tag{iii}
\end{align*}
$$

$$
\left[\because \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right]
$$

Again, Given: Angle between vectors \hat{a} and $\hat{j}=0 \hat{i}+\hat{j}+0 \hat{k}$ is $\frac{\pi}{4}$.
$\therefore \quad \cos \frac{\pi}{4}=\frac{\hat{a} \cdot \hat{j}}{|\hat{a}||\hat{j}|} \quad \Rightarrow \quad \frac{1}{\sqrt{2}}=\frac{x(0)+y(1)+z(0)}{(1)(1)}$
$\Rightarrow \quad \frac{1}{\sqrt{2}}=y$
Again, Given: Angle between vectors \hat{a} and $\hat{k}=0 \hat{i}+0 \hat{j}+\hat{k}$ is θ where θ is acute.

$$
\begin{equation*}
\therefore \quad \cos \theta=\frac{\hat{a} \cdot \hat{k}}{|\hat{a}||\hat{k}|}=\frac{x(0)+y(0)+z(1)}{(1)(1)}=z \tag{v}
\end{equation*}
$$

Putting values of x, y and z from (iii), (iv) and (v) in (ii),

But θ is acute angle (given)
$\Rightarrow \cos \theta$ is positive and hence $=\frac{1}{2}=\cos \frac{\pi}{3} \Rightarrow \theta=\frac{\pi}{3}$
From (v), $z=\cos \theta=\frac{1}{2}$
Putting values of x, y, z in $(i), \hat{a}=\frac{1}{2} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}+\frac{1}{2} \hat{k}$
\therefore Components of \hat{a} are coefficients of $\hat{i}, \hat{j}, \hat{k}$ in \hat{a}
i.e., $\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}$ and acute angle $\theta=\frac{\pi}{3}$.

$$
\begin{aligned}
& \frac{1}{4}+\frac{1}{2}+\cos ^{2} \theta=1 \\
& \Rightarrow \cos ^{2} \theta=1-\frac{1}{4}-\frac{1}{2}=\frac{4-1-2}{4}=\frac{1}{4} \Rightarrow \cos \theta= \pm \frac{1}{2}
\end{aligned}
$$

4. Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2 \vec{a} \times \vec{b}$.

Sol. L.H.S. $=(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})$

$$
\begin{aligned}
\quad & \vec{a} \times \vec{a}+\vec{a} \times \vec{b}-\vec{b} \times \vec{a}-\vec{b} \times \vec{b} \\
& =\overrightarrow{0}+\vec{a} \times \vec{b}+\vec{a} \times \vec{b}-\overrightarrow{0} \\
{[\because \vec{a}} & \times \vec{a}=\overrightarrow{0}, \vec{b} \times \vec{b}=\overrightarrow{0} \text { and } \vec{b} \times \vec{a}=-\vec{a} \times \vec{b}] \\
& =2 \vec{a} \times \vec{b}=\text { R.H.S. }
\end{aligned}
$$

5. Find λ and μ if $(2 \hat{\boldsymbol{i}}+6 \hat{\boldsymbol{j}}+27 \hat{\boldsymbol{k}}) \times(\hat{\boldsymbol{i}}+\lambda \hat{\boldsymbol{j}}+\mu \hat{\boldsymbol{k}})=\overrightarrow{\boldsymbol{0}}$.

Sol. Given: $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\overrightarrow{0}$

$$
\Rightarrow \quad\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 6 & 27 \\
1 & \lambda & \mu
\end{array}\right|=\overrightarrow{0}
$$

Expanding along first row,

$$
\hat{i}(6 \mu-27 \lambda)-\hat{j}(2 \mu-27)+\hat{k}(2 \lambda-6)=\overrightarrow{0}=0 \hat{i}+0 \hat{j}+0 \hat{k}
$$ Comparing coefficients of $\hat{i}, \hat{j}, \hat{k}$ on both sides, we have

$$
\begin{array}{r}
6 \mu-27 \lambda=0 \\
2 \mu-27=0 \\
2 \lambda-6=0 \tag{iii}
\end{array}
$$

and
From (ii), $2 \mu=27 \quad \Rightarrow \quad \mu=\frac{27}{2}$
From (iii), $2 \lambda=6 \quad \Rightarrow \lambda=\frac{6}{2}=3$
Putting $\lambda=3$ and $\mu=\frac{27}{2}$ in (i), $6\left(\frac{27}{2}\right)-27(3)=0$
or $81-81=0$ or $0=0$ which is true. $\therefore \quad \lambda=3$ and $\mu=\frac{27}{2}$.
6. Given that $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$. What can you conclude about the vectors $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$?
Sol. Given: $\vec{a} \cdot \vec{b}=0 \Rightarrow|\vec{a}||\vec{b}| \cos \theta=0$ \Rightarrow Either $|\vec{a}|=0$
or $|\vec{b}|=0$ or $\cos \theta=0\left(\Rightarrow \theta=90^{\circ}\right)$

\Rightarrow Either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$
or vector \vec{a} is perpendicular to \vec{b}.
$(\because$ By definition, vector \vec{a} is zero vector if and only if $|\vec{a}|=0$)

Again given $\vec{a} \times \vec{b}=\overrightarrow{0} \quad \Rightarrow|\vec{a} \times \vec{b}|=0$
$\Rightarrow|\vec{a}||\vec{b}| \sin \theta=0$
$[\because|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta]$
\Rightarrow Either $|\vec{a}|=0$ or $|\vec{b}|=0$ or $\sin \theta=0(\Rightarrow \theta=0)$

\Rightarrow Either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$ or vectors \vec{a} and \vec{b} are collinear (or parallel) vectors.
We know from common sense that vectors \vec{a} and \vec{b} are perpendicular to each other as well as are parallel (or collinear) is impossible.
\therefore From (i), (ii) and (iii), either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$
$\therefore \quad \vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$
\Rightarrow Either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$
7. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ be given as $a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$, $b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}, c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$
Then show that $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$.
Sol. Given: Vectors $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$,

$$
\begin{gathered}
\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k} \\
\therefore \quad \vec{b}+\vec{c}=\left(b_{1}+c_{1}\right) \hat{i}+\left(b_{2}+c_{2}\right) \hat{j}+\left(b_{3}+c_{3}\right) \hat{k} \\
\text { L.H.S. }=\vec{a} \times(\vec{b}+\vec{c})=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1}+c_{1} & b_{2}+c_{2} & b_{3}+c_{3}
\end{array}\right| \\
=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|+\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
\end{gathered}
$$

[By Property of Determinants]

$$
=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}=\text { R.H.S. }
$$

8. If either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$, then $\vec{a} \times \vec{b}=\overrightarrow{0}$. Is the converse true? Justify your answer with an example.

Sol. Given: Either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$.
$\therefore|\vec{a}|=|\overrightarrow{0}|=0$ or $|\vec{b}|=|\overrightarrow{0}|=0$
$\therefore \quad|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta=0(\sin \theta)=0 \quad[\mathrm{By}(i)]$
$\therefore \quad \vec{a} \times \vec{b}=\overrightarrow{0}$
(By definition of zero vector)
But the converse is not true.
Let $\quad \vec{a}=\hat{i}+\hat{j}+\hat{k} \quad \therefore \quad|\vec{a}|=\sqrt{1+1+1}=\sqrt{3} \neq 0$.
$\therefore \quad \vec{a}$ is a non-zero vector.
Let $|\vec{b}|=2(\hat{i}+\hat{j}+\hat{k})=2 \hat{i}+2 \hat{j}+2 \hat{k}$
$\therefore|\vec{b}|=\sqrt{4+4+4} \quad$ or $\quad|\vec{b}|=\sqrt{12}=\sqrt{4 \times 3}=2 \sqrt{3} \neq 0$. $\therefore \quad \vec{b}$ is a non-zero vector.
But $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & 2 & 2\end{array}\right|$
Taking 2 common from R_{3}, $=$ $\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right|=\overrightarrow{0}$
$\left(\because \mathrm{R}_{2}\right.$ and R_{3} are identical)
9. Find the area of the triangle with vertices $A(1,1,2), B(2,3,5)$ and $C(1,5,5)$.
Sol. Vertices of $\triangle \mathrm{ABC}$ are $\mathrm{A}(1,1,2), \mathrm{B}(2,3,5)$ and $\mathrm{C}(1,5,5)$.
\therefore Position Vector (P,V) of point A is $(1,1,2)=\hat{i}+\hat{j}+2 \hat{k}$
P.V. of point B is $(2,3,5)$

$$
=2 \hat{i}+3 \hat{j}+5 \hat{k}
$$

P.V. of point C is $(1,5,5)$

$$
=\hat{i}+5 \hat{j}+5 \hat{k}
$$

$\therefore \quad \overrightarrow{A B}=P . V$. of point $B-P . V$. of point A

$$
\begin{aligned}
& =2 \hat{i}+3 \hat{j}+5 \hat{k}-(\hat{i}+\hat{j}+2 \hat{k}) \\
& =2 \hat{i}+3 \hat{j}+5 \hat{k}-\hat{i}-\hat{j}-2 \hat{k}=\hat{i}+2 \hat{j}+3 \hat{k}
\end{aligned}
$$

and $\overrightarrow{\mathrm{AC}}=$ P.V. of point C - P.V. of point A
$=\hat{i}+5 \hat{j}+5 \hat{k}-(\hat{i}+\hat{j}+2 \hat{k})=\hat{i}+5 \hat{j}+5 \hat{k}-\hat{i}-\hat{j}-2 \hat{k}$
$=0 \hat{i}+4 \hat{j}+3 \hat{k}$
$\therefore \quad \overrightarrow{\mathbf{A B}} \times \overrightarrow{\mathbf{A C}}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 0 & 4 & 3\end{array}\right|$
$=\hat{i}(6-12)-\hat{j}(3-0)+\hat{k}(4-0)=-6 \hat{i}-3 \hat{j}+4 \hat{k}$
We know that area of triangle ABC

$$
\begin{aligned}
& \left.=\frac{\mathbf{1}}{\mathbf{2}}|\overrightarrow{\mathbf{A B}} \times \overrightarrow{\mathbf{A C}}|=\frac{1}{2} \sqrt{36+9+16} \right\rvert\, \sqrt{x^{2}+y^{2}+z^{2}} \\
& =\frac{1}{2} \sqrt{61} \text { sq. units. }
\end{aligned}
$$

10. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\overrightarrow{\boldsymbol{a}}=\hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}+3 \hat{\boldsymbol{k}}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{\boldsymbol{k}}$.
Sol. Given: Vectors representing two adjacent sides of a parallelogram are

$$
\vec{a}=\hat{i}-\hat{j}+3 \hat{k}
$$

and $\quad \vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$

$\therefore \quad \vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 3 \\ 2 & -7 & 1\end{array}\right|$

$$
=\hat{i}(-1+21)-\hat{j}(1-6)+\hat{k}(-7+2)=20 \hat{i}+5 \hat{j}-5 \hat{k}
$$

We know that area of parallelogram $=|\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}}|$

$$
\begin{aligned}
& =\sqrt{400+25+25}=\sqrt{450}=\sqrt{25 \times 9 \times 2} \\
& =5(3) \sqrt{2}=15 \sqrt{2} \text { square units. }
\end{aligned}
$$

Note. Area of parallelogram whose diagonal vectors are $\vec{\alpha}$ and $\vec{\beta}$ is $\frac{1}{2}|\vec{\alpha} \times \vec{\beta}|$.
11. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$, $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between \vec{a} and \vec{b} is
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{2}$.

Sol. Given: $|\vec{a}|=3,|\vec{b}|=\frac{\sqrt{2}}{3}$ and $\vec{a} \times \vec{b}$ is a unit vector.
$\Rightarrow|\vec{a} \times \vec{b}|=1 \quad \Rightarrow|\vec{a}||\vec{b}| \sin \theta=1$
where θ is the angle between vectors \vec{a} and \vec{b}.
Putting values of $|\vec{a}|$ and $|\vec{b}|, 3\left(\frac{\sqrt{2}}{3}\right) \sin \theta=1$ $\Rightarrow \sqrt{2} \sin \theta=1 \Rightarrow \sin \theta=\frac{1}{\sqrt{2}}=\sin \frac{\pi}{4} \quad \Rightarrow \theta=\frac{\pi}{4}$
\therefore Option (B) is the correct answer.
12. Area of a rectangle having vertices A, B, C and D with position vectors $-\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}-\frac{1}{2} \hat{j}$ $+4 \hat{k}$ and $-\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}$, respectively, is
(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) 4

Sol. Given: ABCD is a rectangle.
We know that $\overrightarrow{\mathrm{AB}}=$ P.V. of point B - P.V. of point A

$$
=\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}-\left(-\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}\right)
$$

$=\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}+\hat{i}-\frac{1}{2} \hat{j}-4 \hat{k}=2 \hat{i}+0 \hat{j}+0 \hat{k}$
$\therefore \quad \overrightarrow{\mathrm{AB}}=|\overrightarrow{\mathrm{AB}}|=\sqrt{4+0+0}=\sqrt{4}=2$
and $\mathrm{AD}=\mathrm{P} . \mathrm{V}$. of point $\mathrm{D}-\mathrm{PV}$. of point A
$=-\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}-\left(-\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}\right)$
$=-\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}+\hat{i}-\frac{1}{2} \hat{j}-4 \hat{k}=-\hat{j}=0 \hat{i}-\hat{j}+0 \hat{k}$
$\therefore \quad \mathrm{AD}=|\overrightarrow{\mathrm{AD}}|=\sqrt{0+1+0}=\sqrt{1}=1$
$\therefore \quad$ Area of rectangle $\mathrm{ABCD}=(\mathrm{AB})(\mathrm{AD}) \quad(=$ Length \times Breadth $)$

$$
=2(1)=2 \text { sq. units }
$$

\therefore Option (C) is the correct answer.
or Area of rectangle $\mathrm{ABCD}=|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AD}}|$.

