

NCERT Class 12 Maths

Solutions Hack and

Chapter - 6

Application of Derivatives

Exercise 6.4

Note. 1. Symbol for approximate value is ~.

2. Δx , a small increment (change) in the value of x, (positive or negative) is ~ dx.

3. Similarly, $\Delta y \sim dy$.

1. Using differentials, find the approximate value of each of the following up to 3 places of decimal.

(i)	$\sqrt{25.3} \ (0.009)^{1/3}$	(<i>ii</i>)	$\sqrt{49.5}$	(<i>iii</i>)	$\sqrt{0.6}$ (15) ^{1/4}
		(v)	$(0.999)^{1/10}$		
(<i>vii</i>)	$(26)^{1/3}$	(viii)	$(255)^{1/4}$	(ix)	$(82)^{1/4}$

(x)	$(401)^{1/2}$	(xi)	$(0.0037)^{1/2}$	(<i>xii</i>)	$(26.57)^{1/3}$
(xiii)	$(81.5)^{1/4}$	(<i>xiv</i>)	$(3.968)^{3/2}$	(<i>xv</i>)	$(32.15)^{1/5}$.

(i) To find approximate value of $\sqrt{25.3}$. Sol.

Let
$$y = \sqrt{x}$$
 ...(*i*) by looking at square root of 25.3
 $\therefore \frac{dy}{dx} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}} \implies dy = \frac{dx}{2\sqrt{x}}$...(*ii*)

Changing x to $x + \Delta x$ and y to $y + \Delta y$ in (i), $y + \Delta y = \sqrt{x + \Delta x} = \sqrt{25.3} = \sqrt{25 + 0.3}$...(*iii*) (25.3 has been written as 25 + 0.3 because we know thesquare root of 25 as = 5) _ Co

The comparing
$$\sqrt{x} + \Delta x$$
 with $\sqrt{25} + 0.3$, we have
 $x = 25$ and $\Delta x = 0.3$...(iv)

From eqn. (*iii*), $\sqrt{25.3} = y + \Delta y \sim y + dy \sim \sqrt{x} + \frac{dx}{2\sqrt{x}}$

(From (i) and (ii))

...

$$\sim \sqrt{x} + \frac{\Delta x}{2\sqrt{x}} \sim \sqrt{25} + \frac{0.3}{2\sqrt{25}} \quad (\text{From } (iv))$$

$$\sim 5 + \frac{0.3}{2(5)} = 5 + \frac{0.3}{10} = 5 + 0.03$$

$$\sqrt{25.3} \sim 5.03.$$

(*ii*) To find approximate value of $\sqrt{49.5}$ Let $y = \sqrt{x}$...(i)

$$\therefore \quad \frac{dy}{dx} = \frac{1}{2\sqrt{x}} \Rightarrow \quad dy = \frac{dx}{2\sqrt{x}} \qquad \dots (ii)$$

Changing x to x +
$$\Delta x$$
 and y to y + Δy in (i),
y + $\Delta y = \sqrt{x + \Delta x} = \sqrt{49.5} = \sqrt{49 + 0.5}$...(iii)

Comparing
$$\sqrt{x} + \Delta x$$
 with $\sqrt{49} + 0.5$,
 $x = 49$ and $\Delta x = 0.5$...(iv)

From eqn. (iii), $\sqrt{49.5} = y + \Delta y \sim y + dy$

$$\sim \sqrt{x} + \frac{dx}{2\sqrt{x}} \quad (\text{From } (i) \text{ and } (ii))$$

$$\sim \sqrt{x} + \frac{dx}{2\sqrt{x}} \sim \sqrt{x} + \frac{\Delta x}{2\sqrt{x}}$$

$$\therefore \qquad \sqrt{49.5} \sim \sqrt{49} + \frac{0.5}{2\sqrt{49}} \qquad [\text{By } (iv)]$$

$$= 7 + \frac{0.5}{2(7)} = 7 + \frac{0.5}{14} = 7 + 0.0357 = 7.0357$$
To find approximate value of $\sqrt{0.6}$

...(*i*)

(*iii*) To find approximate value of $\sqrt{0.6}$ Let $y = \sqrt{x}$

$$\therefore \quad \frac{dy}{dx} = \frac{1}{2\sqrt{x}} \quad \Rightarrow \quad dy = \frac{dx}{2\sqrt{x}} \qquad \dots (ii)$$

Changing x to $x + \Delta x$ and y to $y + \Delta y$ in (i),

$$y + \Delta y = \sqrt{x + \Delta x} = \sqrt{0.6} = \sqrt{0.60}$$
$$= \sqrt{0.64 - 0.04} \qquad \dots (iii) (\because 0.64 - 0.60 = 0.04)$$

Comparing $\sqrt{x} + \Delta x$ with $\sqrt{0.64} - 0.04$, we have x = 0.64 and $\Delta x = -0.04$...(iv)

> From eqn. (*iii*), $\sqrt{0.6} = y + \Delta y \sim y + dy$ $\sim \sqrt{x} + \frac{dx}{2\sqrt{x}}$ (From (*i*) and (*ii*))

$$\sim \sqrt{x} + \frac{\Delta x}{2\sqrt{x}} \sim \sqrt{0.64} - \frac{0.04}{2\sqrt{0.64}}$$

$$\sim \sqrt{0.6} \sim 0.8 - \frac{0.04}{2(0.8)} = 0.8 - \frac{0.04}{1.6} = 0.8 - \frac{4}{100} \times \frac{10}{16}$$

$$= 0.8 - \frac{1}{40} = 0.8 - 0.025 = 0.775.$$

(*iv*) To find approximate value of $(0.009)^{1/3}$

Let
$$y = x^{1/3}$$
 ...(*i*) by looking at power (index) $\frac{1}{3}$ of 0.009.

$$\therefore \frac{dy}{dx} = \frac{1}{3}x^{-2/3} = \frac{1}{3x^{2/3}} \implies dy = \frac{dx}{3x^{2/3}} \sim \frac{\Delta x}{3(x^{1/3})^2} \quad \dots (ii)$$

Changing x to $x + \Delta x$ and y to $y + \Delta y$ in (i), $y + \Delta y = (x + \Delta x)^{1/3} = (0.009)^{1/3} = (0.008 + 0.001)^{1/3}$...(iii) 0.009 has been written as 0.008 + 0.001 because we know that the cube root of 0.008 *i.e.*, $(0.008)^{1/3} = 0.2$ Comparing $(x + \Delta x)^{1/3}$ with $(0.008 + 0.001)^{1/3}$, we have

$$x = 0.008 \text{ and } \Delta x = 0.001$$
 ...(*iv*)

From eqn. (*iii*), $(0.009)^{1/3} = y + \Delta y$

$$\sim y + dy = x^{1/3} + \frac{dx}{3x^{2/3}} \sim x^{1/3} + \frac{\Delta x}{3(x^{1/3})^2}$$
(From (i) and (ii)) $\sim (0.008)^{1/3} + \frac{(0.001)}{3((0.008)^{1/3})^2}$

$$\therefore \quad (0.009)^{1/3} \sim 0.2 + \frac{0.001}{3(0.2)^2} = 0.2 + \frac{0.001}{3(0.04)}$$

$$= 0.2 + \frac{0.001}{0.12} \quad [(0.008)^{1/3} = ((0.2)^3)^{1/3} = 0.2]$$

$$\sim 0.2 + 0.0083 = 0.2083.$$

(v) To find approximate value of $(0.999)^{1/10}$ Let $y = x^{1/10}$

$$\therefore \qquad \frac{dy}{dx} = \frac{1}{10} x^{-9/10} = \frac{1}{10x^{9/10}}$$
$$\Rightarrow \qquad dy = \frac{dx}{10(x^{1/10})^9} \sim \frac{\Delta x}{10(x^{1/10})^9} \qquad \dots (ii)$$

Changing x to $x + \Delta x$ and y to $y + \Delta y$ in (i), $y + \Delta y = (x + \Delta x)^{1/10} = (0.999)^{1/10} = (1 - 0.001)^{1/10}$...(iii) Comparing x = 1 and $\Delta x = -0.001$...(iv)

Comparing x = 1 and $\Delta x = -0.001$ From eqn. (*iii*), $(0.999)^{1/10} = y + \Delta y \sim y + dy$

~
$$x^{1/10}$$
 + $\frac{\Delta x}{10(x^{1/10})^9}$ [From (*i*)

...(*i*)

and (ii)]

...

...

$$\sim (1)^{1/10} - \frac{0.001}{10(1^{1/10})^9} = 1 - \frac{0.001}{10} = 1 - 0.0001 = 0.9999$$

(vi) To find approximate value of $(15)^{1/4}$ Let $y = x^{1/4}$...(i)

$$\therefore \quad \frac{dy}{dx} = \frac{1}{4}x^{1/4 - 1} = \frac{1}{4}x^{-3/4} = \frac{1}{4x^{3/4}}$$

$$\therefore \quad dy = \frac{dx}{4(x^{1/4})^3} \sim \frac{\Delta x}{4(x^{1/4})^3} \qquad \dots (ii)$$

Changing x to $x + \Delta x$ and y to $y + \Delta y$ in (i), $y + \Delta y = (x + \Delta x)^{1/4} = (15)^{1/4} = (16 - 1)^{1/4}$...(iii) Comparing, x = 16 and $\Delta x = -1$...(iv)

Comparing, x = 16 and $\Delta x = -1$ From eqn. (*iii*), $(15)^{1/4} = y + \Delta y \sim y + dy$

$$x^{1/4} + \frac{\Delta x}{4(x^{1/4})^3}$$
 (From (*i*) and (*ii*))

~
$$(16)^{1/4} - \frac{1}{4((16)^{1/4})^3}$$
 (From (*iv*))

$$= 2 - \frac{1}{4 \times 2^3} \qquad (\because (16)^{1/4} = (2^4)^{1/4} = 2)$$

$$\therefore \quad (15)^{1/4} \sim 2 - \frac{1}{32} = \frac{64 - 1}{32} = \frac{63}{32} = 1.96875.$$

(vii) To find approximate value of
$$(26)^{1/3}$$

Let $y = x^{1/3}$...(i)

$$\frac{dy}{dx} = \frac{1}{3}x^{-2/3} = \frac{1}{3x^{2/3}}$$
$$dy = \frac{dx}{3x^{2/3}} \sim \frac{\Delta x}{3(x^{1/3})^2} \qquad \dots (ii)$$

Changing x to $x + \Delta x$ and y to $y + \Delta y$ in (i), $y + \Delta y = (x + \Delta x)^{1/3} = (26)^{1/3} = (27 - 1)^{1/3} ...(iii)$ Comparing, x = 27 and $\Delta x = -1$...(iv)

From (*iii*), $(26)^{1/3} = y + \Delta y \sim y + dy$ $\sim x^{1/3} + \frac{\Delta x}{3(x^{1/3})^2}$ [From (iii) and (ii)] $\sim (27)^{1/3} - \frac{1}{3((27)^{1/3})^2}$ [From (*iii*)] \therefore (26)^{1/3} ~ 3 - $\frac{1}{2(2)^2}$ [:: $(27)^{1/3} = (3^3)^{1/3} = 3$] $= 3 - \frac{1}{27} = \frac{81 - 1}{27} = \frac{80}{27} = 2.9629.$ (*viii*) To find approximate value of $(255)^{1/4}$ Let $y = x^{1/4}$...(i) $\frac{dy}{dx} = \frac{1}{4}x^{-3/4} = \frac{1}{4x^{3/4}}$ *.*.. $dy = \frac{dx}{4x^{3/4}} \sim \frac{\Delta x}{4(x^{1/4})^3}$ *.*.. ...(ii) Changing x to $x + \Delta x$ and y to $y + \Delta y$ in (i), $y + \Delta y = (x + \Delta x)^{1/4} = (255)^{1/4} = (256 - 1)^{1/4}$...(*iii*) Comparing, x = 256 and $\Delta x = -1$...(iv) From (*iii*), $(255)^{1/4} = y + \Delta y$ $\sim x^{1/4} + \frac{\Delta x}{4(x^{1/4})^3} \qquad (From (i) and (ii))$ $\sim (256)^{1/4} - \frac{1}{4((256)^{1/4})^3} \sim 4 - \frac{1}{4(4)^3}$ $[\because (256)^{1/4} = (4^4)^{1/4} = 4]$ $\sim 4 - \frac{1}{256} = \frac{1024 - 1}{256} = \frac{1023}{256} \sim 3.9961.$ (ix) To find approximate value of $(82)^{1/4}$ $y = x^{1/4}$ Let ...(i) $\frac{dy}{dx} = \frac{1}{4}x^{-3/4} = \frac{1}{4x^{3/4}}$ *.*.. $dy = \frac{dx}{4(x^{1/4})^3} \sim \frac{\Delta x}{4(x^{1/4})^3}$ *.*.. ...(ii) Changing x to $x + \Delta x$ and y to $y + \Delta y$ in (i), $y + \Delta y = (x + \Delta x)^{1/4} = (82)^{1/4} = (81 + 1)^{1/4}$...(*iii*) Comparing, x = 81 and $\Delta x = 1$...(iv) From (*iii*), $(81)^{1/4} = y + \Delta y \sim y + dy$ $\sim x^{1/4} + \frac{\Delta x}{4(x^{1/4})^3}$ [From (i) and (ii)] $\sim (81)^{1/4} + \frac{1}{4((81)^{1/4})^3} = 3 + \frac{1}{4(3)^3}$ $\sim 3 + \frac{1}{108} = \frac{324 + 1}{108} = \frac{325}{108} = 3.0092.$ (x) To find approximate value of $(401)^{1/2} = \sqrt{401}$

Let

$$y = x^{1/2} = \sqrt{x}$$
 ...(*i*)

..

...

$$\frac{dy}{dx} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$$
$$dy = \frac{dx}{2\sqrt{x}} \sim \frac{\Delta x}{2\sqrt{x}} \qquad \dots (ii)$$

Changing x to $x + \Delta x$ and y to $y + \Delta y$ in (i),

$$y + \Delta y = \sqrt{x + \Delta x} = \sqrt{401} = \sqrt{400 + 1}$$
 ...(*iii*)
Comparing, $x = 400$ and $\Delta x = 1$...(*iv*)

From (*iii*),
$$\sqrt{401} = y + \Delta y \sim y + dy$$

 $\sim \sqrt{x} + \frac{\Delta x}{2\sqrt{x}}$ [From (*i*) and (*ii*)]
 $\sqrt{401} = y + \Delta y \sim y + dy$

$$\sim \sqrt{400} + \frac{1}{2\sqrt{400}} = 20 + \frac{1}{40} = \frac{800 + 1}{40} = \frac{801}{40} \sim 20.025.$$

(xi) To find approximate value of $(0.0037)^{1/2} = \sqrt{0.0037}$

Let
$$y = \sqrt{x}$$
 ...(*i*)
 $\therefore \qquad \frac{dy}{dx} = \frac{1}{2\sqrt{x}} \implies dy = \frac{dx}{2\sqrt{x}} = \frac{\Delta x}{2\sqrt{x}}$...(*ii*)

Changing x to x + Δx and y to y + Δy in (i),

$$y + \Delta y = \sqrt{x + \Delta x} = \sqrt{0.0037} = \sqrt{0.0036 + 0.0001} \qquad \dots (iii)$$

(:: 0.0037 - 0.0036 = 0.0001)

Comparing with
$$x + \Delta x$$
, $x = 0.0036$ and $\Delta x = 0.0001$...(*iv*)
From (*iii*), $\sqrt{0.0037} = y + \Delta y \sim y + dy$

$$= \sqrt{x} + \frac{\Delta x}{2\sqrt{x}}$$
 (From (*i*) and (*ii*))

$$\sim \sqrt{0.0036} + \frac{0.0001}{2\sqrt{0.0036}}$$

$$= 0.06 + \frac{0.0001}{2(0.06)}$$
 [(0.06)² = 0.0036]

$$\sim 0.06 + \frac{0.0001}{0.12} \sim 0.06 + 0.000833 \sim 0.060833.$$

(*xii*) To find approximate value of $(26.57)^{1/3}$ Let $y = x^{1/3}$

$$y = x^{1/3}$$
 ...(*i*)
 $dy = 1$ $y_{2} = 1$

Changing x to $x + \Delta x$ and y to $y + \Delta y$ in (i), $y + \Delta y = (x + \Delta x)^{1/3} = (26.57)^{1/3}$ $= (27 - 0.43)^{1/3}$...(*iii*) [:: 27 - 26.57 = 0.43] Comparing with $x + \Delta x$, x = 27 and $\Delta x = -0.43$...(*iv*)

From (*iii*), $(26.57)^{1/3} = y + \Delta y \sim x^{1/3} + \frac{\Delta x}{3(x^{1/3})^2}$ (From (i) and (ii)) $\sim (27)^{1/3} - \frac{0.43}{3((27)^{1/3})^2} \sim 3 - \frac{0.43}{3(3)^2}$ $\sim 3 - \frac{0.43}{27} \sim 3 - 0.0159 \sim 2.9841.$ (*xiii*) To find approximate value of $(81.5)^{1/4}$ $v = x^{1/4}$ Let ...(i) $\frac{dy}{dx} = \frac{1}{4} \cdot x^{-3/4} = \frac{1}{4x^{(3/4)}}$ *:*. $dy = \frac{dx}{4(x^{3/4})} \sim \frac{\Delta x}{4(x^{1/4})^3}$ *.*.. ...(*ii*) Changing x to $x + \Delta x$ and y to $y + \Delta y$ in (i), $y + \Delta y = (x + \Delta x)^{1/4} = (81.5)^{1/4} = (81 + 0.5)^{1/4}$...(*iii*) Comparing with $x + \Delta x$ we have x = 81From (*iii*), $(81.5)^{1/4} = y + \Delta y \sim y + dy$ $\sim x^{1/4} + \frac{\Delta x}{4(x^{1/4})^3}$ (From ...(*iv*) (From (i) and (ii)) $\sim (81)^{1/4} + \frac{0.5}{4((81)^{1/4})^3} \sim 3 + \frac{0.5}{4(3)^3}$ $\sim 3 + \frac{0.5}{108} \sim 3 + 0.00462 \sim 3.00462.$ (xiv) To find approximate value of $(3.968)^{3/2}$ Let $y = x^{3/2} = x^{2/2 + 1/2} = x^{1 + 1/2}$ $= r^1 r^{1/2} = r \sqrt{x}$...(i) On looking at power (index) $\frac{3}{2}$ of 3.968 $\therefore \quad \frac{dy}{dx} = \frac{3}{2}x^{1/2} \therefore \quad dy = \frac{3}{2}x^{1/2} \, dx \sim \frac{3}{2}\sqrt{x} \, \Delta x$...(ii) Changing x to $x + \Delta x$ and y to $y + \Delta y$ in (i), $y + \Delta y = (x + \Delta x)^{3/2} = (3.968)^{3/2} = (4 - 0.032)^{3/2}$...(*iii*) Comparing with $x + \Delta x$, we have x = 4 and $\Delta x = -0.032$...(iv) From (*iii*), $(3.968)^{3/2} = y + \Delta y \sim y + dy$ $\sim x\sqrt{x} + \frac{3}{2}\sqrt{x} \Delta x$ (From (i) and (ii))

~
$$4\sqrt{4} + \frac{3}{2}\sqrt{4} (-0.032)$$
 [By (*iv*)]

$$\begin{array}{c} \sim 4(2) - \frac{3}{2}(2)(0.032) \sim 8 - 3(0.032) \\ \sim 8 - 0.096 \sim 7.904. \end{array} \\ (xv) To find approximate value of $(32.15)^{1/5}$
Let $y = x^{1/5}$...(i)
 $\therefore \frac{dy}{dx} = \frac{1}{5}x^{-4/5} = \frac{1}{5x^{4/5}} \therefore dy = \frac{dx}{5x^{4/5}} \sim \frac{\Delta x}{5(x^{1/5})^4}$...(ii)
Changing x to $x + \Delta x$ and y to $y + \Delta y$ in (i),
 $y + \Delta y = (x + \Delta x)^{1/5} = (32.15)^{1/5} = (32 + 0.15)^{1/5}$...(iii)
Comparing with $x + \Delta x$, we have $x = 32$ and $\Delta x = 0.15$
...(iv)
From (iii), $(32.15)^{1/5} = y + \Delta y \sim y + dy$
 $\sim x^{1/5} + \frac{\Delta x}{5(x^{1/5})^4}$ (From (i) and (ii))
 $\sim (32)^{1/5} + \frac{0.15}{5((32)^{1/5})^4} \sim 2 + \frac{0.15}{5(2)^4} (\because (32)^{1/5} = (2^5)^{1/5} = 2)$
 $\sim 2 + \frac{0.15}{80} \sim 2 + 0.001875 \sim 2.001875.$
2. Find the approximate value of $f(2.01)$ where
 $f(x) = 4x^2 + 5x + 2.$
Sol. Let $y = f(x) = 4x^2 + 5x + 2$...(i)
 $\therefore \frac{dy}{dx} = f'(x) = 8x + 5$
 $\therefore dy = (8x + 5)dx \sim (8x + 5)\Delta x$...(ii)
Changing x to $x + \Delta x$ and y to $y + \Delta y$ in (i),
 $y + \Delta y = f(x + \Delta x) = f(2.01) = f(2 + 0.01)$...(iii)
Comparing $f(x + \Delta x)$ with $f(2 + 0.01)$, we have
 $x = 2$ and $\Delta x = 0.01$...(iv)
From (iii), $f(2.01) = y + \Delta y \sim y + dy$
 $\sim (4x^2 + 5x + 2) + (8x + 5) \Delta x$ (From (i) and (ii))
Putting $x = 2$ and $\Delta x = 0.01$ rom (iv),
 $\sim (4x^2 + 5x + 2) + (8x + 5) \Delta x$ (From (i) and (ii))
Putting $x = 2$ and $\Delta x = 0.01$ rom (iv),
 $\sim (4x^2 + 5x + 2) + (8x + 5) \Delta x$ (From (i) and (ii))
Putting $x = 2$ and $\Delta x = 0.01$ rom (iv),
 $\sim (4x^2 + 5x + 2) + (8x + 5) \Delta x$ (From (i) and (ii))
Putting $x = 2$ and $\Delta x = 0.01$ rom (iv),
 $\sim (4x^2 + 5x + 2) + (8x + 5) \Delta x$ (if)
(changing x to $x^3 - 7x^2 + 15$...(i)
 $\therefore \frac{dy}{dx} = f'(x) = 3x^2 - 14x$
 $\therefore dy = (3x^2 - 14x)dx \sim (3x^2 - 14x)\Delta x$...(ii)
Changing x to $x + \Delta x$ and y to $y + \Delta y$ in (i),
 $y + \Delta y = f(x + \Delta x) = f(5.001) = f(5 + 0.001)$...(iv)
Comparing $f(x + \Delta x)$ ef(5 + 0.001), we have
 $x = 5$ and $\Delta x = 0.001$...(iv)$$

- From (*iii*), $f(5.001) = y + \Delta y \sim y + dy$ $\sim (x^3 - 7x^2 + 15) + (3x^2 - 14x)\Delta x$ (From (*i*) and (*ii*)) Putting x = 5 and $\Delta x = 0.001$ from (*iv*), we have $\sim (125 - 175 + 15) + (75 - 70) (0.001)$ $\sim -35 + 5(0.001) \sim -35 + 0.005$ $\sim -34.995.$
- 4. Find the approximate change in the volume of a cube of side x metres caused by increasing the side by 1%.
- **Sol.** We know that volume of a cube of side *x* metres is given by

$$\mathbf{V} = \mathbf{x}^3 \qquad \dots (i)$$

$$\frac{dV}{dx} = 3x^2 \qquad \dots (ii)$$

Given: Increase in side = 1% of $x = \frac{1}{100}x$

....

(Positive sign is being taken because it is given that side of cube is increasing)

i.e.,
$$\Delta x = \frac{x}{100}$$
 ...(*iii*)

We know that approximate change in volume V of cube

$$= \Delta V \sim dV = \frac{dV}{dx} dx$$

$$\sim \frac{dV}{dx} \Delta x \sim 3x^2 \left(\frac{x}{100}\right) \qquad | \text{ From } (ii) \text{ and } (iii)$$

$$\sim \frac{3}{100} x^3$$

$$\sim 0.03x^3 \text{ m}^3$$

- 5. Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%.
- **Sol.** We know that surface area of a cube of side x is given by $S = 6x^2$

$$\therefore \qquad \frac{dS}{dx} = 12x$$

Decrease in side = -1% of x = -0.01x [Negative sign is being taken because it is given that side of the cube is decreasing] $\Rightarrow \Delta x = -0.01x$

Approximate change in S = Approximate value of ΔS

$$= d\mathbf{S} = \left(\frac{d\mathbf{S}}{dx}\right) dx$$

= (12x) (- 0.01x) [:: $dx = \Delta x$]
= - 0.12x² m²

Hence, the approximate change in surface is $-0.12x^2$ m², *i.e.*, the surface **decreases** by approximately $0.12x^2$ m².

6. If the radius of a sphere is measured as 7 m with an error of 0.02 m, then find the approximate error in calculating its volume.

Sol. Let r be the radius of the sphere and Δr be the error in measuring the radius.

Then r = 7 m and $\Delta r = 0.02$ m.

Volume of a sphere of radius r is given by $V = \frac{4}{3}\pi r^3$

 $\therefore \qquad \frac{d\mathbf{V}}{dr} = \frac{4}{3}\pi.3r^2$

Approximate error in calculating the volume - Approximate value of AV

= Approximate value of
$$\Delta V$$

= $dV = \left(\frac{dV}{dr}\right) dr = \left(\frac{4}{3}\pi 3r^2\right) dr$
= $4\pi(7)^2$ (0.02) [:: $dr \sim \Delta r$]
= 3.92π m³ = $3.92 \times \frac{22}{7}$ m³
= 12.32 m³

Hence, the approximate error in calculating volume is 12.32 m³.

7. If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating its surface area.

Sol. Let x m be the radius of the sphere. \therefore S surface area of sphere = $4\pi x^2$

$$dS = 4\pi(2x) = 8\pi x$$

∴ $dS = 8\pi x \, dx ~ 8\pi x \, \Delta x$...(i)
Given: $x = 9$ m and error $\Delta x = 0.03$ m ...(ii)
Putting $x = 9$ and $\Delta x = 0.03$ from (ii) in (i),
Error ΔS in surface area of sphere
~ $dS = 8\pi(9)(0.3) = 72(0.03)\pi = 2.16\pi$ m².
(Note. Error can be positive or negative)
8. If $f(x) = 3x^2 + 15x + 5$, then the approximate value of
 $f(3.02)$ is
(A) 47.66 (B) 57.66 (C) 67.66 (D) 77.66.
Sol. Let $y = f(x) = 3x^2 + 15x + 5$...(i)
∴ $\frac{dy}{dx} = f'(x) = 6x + 15$
∴ $dy = (6x + 15)dx ~ (6x + 15)\Delta x$...(ii)
Changing x to $x + \Delta x$ and y to $y + \Delta y$ in (i),
 $y + \Delta y = f(x + \Delta x) = f(3.02) = f(3 + 0.02)$...(iii)
Comparing $f(x + \Delta x)$ with $f(3 + 0.02)$, we have
 $x = 3$ and $\Delta x = 0.02$...(iv)
From (iii), $f(3.02) = y + \Delta y ~ y + dy$
 $~ (3x^2 + 15x + 5) + (6x + 15)\Delta x$ (From (i) and (ii))
 $~ (3(9) + 15(3) + 5) + (6(3) + 15) (0.02)$
 $= (72 + 5) + (33)(0.02)$

$$\sim 77 + 0.66 \sim 77.66$$

 \therefore Option (D) is the correct answer.

...

- The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
- (A) 0.06 x^3 m³ (B) 0.6 x^3 m³ (C) 0.09 x^3 m³ (D) 0.9 x^3 m³. Sol. We know that volume of a cube of side x metres is given by

$$\mathbf{V} = x^3 \qquad \dots (i)$$

$$\frac{d\mathbf{V}}{dx} = 3x^2 \qquad \dots (ii)$$

Given: Increase in side of cube = $3\% = \frac{3}{100}x$

(Positive sign is being taken because it is given that side of cube is increasing)

i.e.,
$$\Delta x = \frac{3x}{100} \qquad \dots (iii)$$

We know that approximate change in volume of cube

$$= \Delta V \sim dV = \frac{dV}{dx} dx$$

$$\sim \frac{dV}{dx} \Delta x \sim 3x^2 \left(\frac{3x}{100}\right) \qquad 1 \text{ From } (i) \text{ and } (iii)$$

$$\sim \frac{9}{100} x^3 \sim 0.09 x^3 \text{ m}^3.$$

.. Option (C) is the correct answer.