

Same textbooks, kltck away

NCERT Class 12 Maths

Solutions

Chapter-6

Application of Derivatives

Exercise 6.4

Note. 1. Symbol for approximate value is ~.
2. Δx, a small increment (change) in the value of x, (positive or negative) is $\sim d x$.
3. Similarly, $\Delta y \sim d y$.

1. Using differentials, find the approximate value of each of the following up to 3 places of decimal.
$\begin{aligned} \text { (i) } & \sqrt{25.3} \\ \text { (iv) } & (0.009)^{1 / 3} \\ \text { (vii) } & (26)^{1 / 3}\end{aligned}$
(ii)
(v)
$(0.999)^{1 / 10}$
(viii) $(255)^{1 / 4}$
$\begin{array}{cc}\text { (iii) } & \sqrt{0.6} \\ \text { (vi) } & (15)^{1 / 4} \\ \text { (ix) } & (82)^{1 / 4}\end{array}$
(x) $(401)^{1 / 2}$
(xi) $(0.0037)^{1 / 2}$
(xii) $(26.57)^{1 / 3}$
(xiii) $(81.5)^{1 / 4}$
(xiv) $(3.968)^{3 / 2}$
(xv) $(32.15)^{1 / 5}$.

Sol. (i) To find approximate value of $\sqrt{25.3}$.
Let $y=\sqrt{x} \quad \ldots$ (i) by looking at square root of 25.3
$\therefore \frac{d y}{d x}=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}} \Rightarrow d y=\frac{d x}{2 \sqrt{x}}$
Changing x to $x+\Delta x$ and y to $y+\Delta y$ in (i),
$y+\Delta y=\sqrt{x+\Delta x}=\sqrt{25.3}=\sqrt{25+0.3}$
(25.3 has been written as $25+0.3$ because we know the square root of 25 as $=5$)
Comparing $\sqrt{x+\Delta x}$ with $\sqrt{25+0.3}$, we have $x=25$ and $\Delta x=0.3$
From eqn. (iii), $\sqrt{25.3}=y+\Delta y \sim y+d y \sim \sqrt{x}+\frac{d x}{2 \sqrt{x}}$
(From (i) and (ii))

$$
\begin{aligned}
& \sim \sqrt{x}+\frac{\Delta x}{2 \sqrt{x}} \sim \sqrt{25}+\frac{0.3}{2 \sqrt{25}} \quad(\text { From (iv)) } \\
& \sim 5+\frac{0.3}{2(5)}=5+\frac{0.3}{10}=5+0.03 \\
\therefore & \sqrt{25.3} \sim 5.03 .
\end{aligned}
$$

(ii) To find approximate value of $\sqrt{49.5}$

Let $y=\sqrt{x}$
$\therefore \frac{d y}{d x}=\frac{1}{2 \sqrt{x}} \Rightarrow d y=\frac{d x}{2 \sqrt{x}}$
Changing x to $x+\Delta x$ and y to $y+\Delta y$ in (i),
$y+\Delta y=\sqrt{x+\Delta x}=\sqrt{49.5}=\sqrt{49+0.5}$
Comparing $\sqrt{x+\Delta x}$ with $\sqrt{49+0.5}$,

$$
\begin{equation*}
x=49 \text { and } \Delta x=0.5 \tag{iv}
\end{equation*}
$$

From eqn. (iii), $\sqrt{49.5}=y+\Delta y \sim y+d y$

$$
\begin{aligned}
& \sim \sqrt{x}+\frac{d x}{2 \sqrt{x}} \quad(\text { From (i) and (ii)) } \\
& \sim \sqrt{x}+\frac{d x}{2 \sqrt{x}} \sim \sqrt{x}+\frac{\Delta x}{2 \sqrt{x}} \\
& \therefore \quad \sqrt{49.5} \sim \sqrt{49}+\frac{0.5}{2 \sqrt{49}} \\
& =7+\frac{0.5}{2(7)}=7+\frac{0.5}{14}=7+0.0357=7.0357
\end{aligned}
$$

(iii) To find approximate value of $\sqrt{0.6}$

Let $y=\sqrt{x}$

$$
\begin{equation*}
\therefore \quad \frac{d y}{d x}=\frac{1}{2 \sqrt{x}} \Rightarrow d y=\frac{d x}{2 \sqrt{x}} \tag{ii}
\end{equation*}
$$

Changing x to $x+\Delta x$ and y to $y+\Delta y$ in (i),

$$
\begin{aligned}
y+\Delta y & =\sqrt{x+\Delta x}=\sqrt{0.6}=\sqrt{0.60} \\
& =\sqrt{0.64-0.04} \quad \ldots(i i i)(\because 0.64-0.60=0.04)
\end{aligned}
$$

Comparing $\sqrt{x+\Delta x}$ with $\sqrt{0.64-0.04}$,
we have $x=0.64$ and $\Delta x=-0.04$
From eqn. (iii), $\sqrt{0.6}=y+\Delta y \sim y+d y$
$\sim \sqrt{x}+\frac{d x}{2 \sqrt{x}} \quad$ (From (i) and (ii))
$\sim \sqrt{x}+\frac{\Delta x}{2 \sqrt{x}} \sim \sqrt{0.64}-\frac{0.04}{2 \sqrt{0.64}}$
$\therefore \quad \sqrt{0.6} \sim 0.8-\frac{0.04}{2(0.8)}=0.8-\frac{0.04}{1.6}=0.8-\frac{4}{100} \times \frac{10}{16}$
$=0.8-\frac{1}{40}=0.8-0.025=0.775$.
(iv) To find approximate value of $(0.009)^{1 / 3}$

Let $y=x^{1 / 3} \quad \ldots(i)$ by looking at power (index) $\frac{1}{3}$ of 0.009 .
$\therefore \frac{d y}{d x}=\frac{1}{3} x^{-2 / 3}=\frac{1}{3 x^{2 / 3}} \Rightarrow d y=\frac{d x}{3 x^{2 / 3}} \sim \frac{\Delta x}{3\left(x^{1 / 3}\right)^{2}}$
Changing x to $x+\Delta x$ and y to $y+\Delta y$ in (i),
$y+\Delta y=(x+\Delta x)^{1 / 3}=(0.009)^{1 / 3}=(0.008+0.001)^{1 / 3}$
0.009 has been written as $0.008+0.001$ because we know that the cube root of 0.008 i.e., $(0.008)^{1 / 3}=0.2$
Comparing $(x+\Delta x)^{1 / 3}$ with $(0.008+0.001)^{1 / 3}$, we have $x=0.008$ and $\Delta x=0.001$
From eqn. (iii), $(0.009)^{1 / 3}=y+\Delta y$

$$
\sim y+d y=x^{1 / 3}+\frac{d x}{3 x^{2 / 3}} \sim x^{1 / 3}+\frac{\Delta x}{3\left(x^{1 / 3}\right)^{2}}
$$

(From (i) and (ii)) $\quad \sim(0.008)^{1 / 3}+\frac{(0.001)}{3\left((0.008)^{1 / 3}\right)^{2}}$
$\therefore \quad(0.009)^{1 / 3} \sim 0.2+\frac{0.001}{3(0.2)^{2}}=0.2+\frac{0.001}{3(0.04)}$
$=0.2+\frac{0.001}{0.12} \quad\left[(0.008)^{1 / 3}=\left((0.2)^{3}\right)^{1 / 3}=0.2\right]$
$\sim 0.2+0.0083=0.2083$.
(v) To find approximate value of $(0.999)^{1 / 10}$

Let

$$
\begin{equation*}
y=x^{1 / 10} \tag{i}
\end{equation*}
$$

$\therefore \quad \frac{d y}{d x}=\frac{1}{10} x^{-9 / 10}=\frac{1}{10 x^{9 / 10}}$
$\Rightarrow \quad d y=\frac{d x}{10\left(x^{1 / 10}\right)^{9}} \sim \frac{\Delta x}{10\left(x^{1 / 10}\right)^{9}}$
Changing x to $x+\Delta x$ and y to $y+\Delta y$ in (i),
$y+\Delta y=(x+\Delta x)^{1 / 10}=(0.999)^{1 / 10}=(1-0.001)^{1 / 10}$
Comparing $x=1$ and $\Delta x=-0.001$
From eqn. (iii), $(0.999)^{1 / 10}=y+\Delta y \sim y+d y$

$$
\sim x^{1 / 10}+\frac{\Delta x}{10\left(x^{1 / 10}\right)^{9}} \quad[\text { From }(i)
$$

and (ii)]

$$
\begin{aligned}
\sim(1)^{1 / 10}-\frac{0.001}{10\left(1^{1 / 10}\right)^{9}} & =1-\frac{0.001}{10} \\
& =1-0.0001=0.9999
\end{aligned}
$$

(vi) To find approximate value of $(15)^{1 / 4}$

Let $y=x^{1 / 4}$

$$
\begin{align*}
& \therefore \quad \frac{d y}{d x}=\frac{1}{4} x^{1 / 4-1}=\frac{1}{4} x^{-3 / 4}=\frac{1}{4 x^{3 / 4}} \tag{i}\\
& \therefore \quad d y=\frac{d x}{4\left(x^{1 / 4}\right)^{3}} \sim \frac{\Delta x}{4\left(x^{1 / 4}\right)^{3}} \tag{ii}
\end{align*}
$$

Changing x to $x+\Delta x$ and y to $y+\Delta y$ in (i),
$y+\Delta y=(x+\Delta x)^{1 / 4}=(15)^{1 / 4}=(16-1)^{1 / 4}$
Comparing, $x=16$ and $\Delta x=-1$
From eqn. (iii), (15) $)^{1 / 4}=y+\Delta y \sim y+d y$

$$
\begin{array}{rlr}
& =x^{1 / 4}+\frac{\Delta x}{4\left(x^{1 / 4}\right)^{3}} & \quad \text { (From (i) and (ii)) } \\
& \sim(16)^{1 / 4}-\frac{1}{4\left((16)^{1 / 4}\right)^{3}} \quad \quad \quad(\text { From (iv)) } \\
& =2-\frac{1}{4 \times 2^{3}} \quad\left(\because(16)^{1 / 4}=\left(2^{4}\right)^{1 / 4}=2\right) \\
\therefore \quad(15)^{1 / 4} \sim 2-\frac{1}{32}=\frac{64-1}{32}=\frac{63}{32}=1.96875 .
\end{array}
$$

(vii) To find approximate value of $(26)^{1 / 3}$

Let $\quad y=x^{1 / 3}$
$\therefore \quad \frac{d y}{d x}=\frac{1}{3} x^{-2 / 3}=\frac{1}{3 x^{2 / 3}}$
$\therefore \quad d y=\frac{d x}{3 x^{2 / 3}} \sim \frac{\Delta x}{3\left(x^{1 / 3}\right)^{2}}$
Changing x to $x+\Delta x$ and y to $y+\Delta y$ in (i),

$$
\begin{equation*}
y+\Delta y=(x+\Delta x)^{1 / 3}=(26)^{1 / 3}=(27-1)^{1 / 3} . \tag{iii}
\end{equation*}
$$

Comparing, $x=27$ and $\Delta x=-1$

From (iii), $(26)^{1 / 3}=y+\Delta y \sim y+d y$

$$
\begin{array}{ccc}
& \sim x^{1 / 3}+\frac{\Delta x}{3\left(x^{1 / 3}\right)^{2}} & \\
& \sim(27)^{1 / 3}-\frac{1}{3\left((27)^{1 / 3}\right)^{2}} & \\
& & {[\text { From (iii) and (ii)] }} \\
\therefore & (26)^{1 / 3} \sim 3-\frac{1}{3(3)^{2}} & \left.[\because 7)^{1 / 3}=\left(3^{3}\right)^{1 / 3}=3\right] \\
& =3-\frac{1}{27}=\frac{81-1}{27}=\frac{80}{27}=2.9629 .
\end{array}
$$

(viii) To find approximate value of $(255)^{1 / 4}$

$$
\begin{equation*}
\text { Let } \quad y=x^{1 / 4} \tag{i}
\end{equation*}
$$

$$
\begin{array}{ll}
\therefore & \frac{d y}{d x}=\frac{1}{4} x^{-3 / 4}=\frac{1}{4 x^{3 / 4}} \\
& \therefore \tag{ii}
\end{array} d y=\frac{d x}{4 x^{3 / 4}} \sim \frac{\Delta x}{4\left(x^{1 / 4}\right)^{3}}
$$

Changing x to $x+\Delta x$ and y to $y+\Delta y$ in (i),

$$
\begin{equation*}
y+\Delta y=(x+\Delta x)^{1 / 4}=(255)^{1 / 4}=(256-1)^{1 / 4} \tag{iii}
\end{equation*}
$$

Comparing, $x=256$ and $\Delta x=-1$
From (iii), $(255)^{1 / 4}=y+\Delta y$

$$
\begin{aligned}
& \sim x^{1 / 4}+\frac{\Delta x}{4\left(x^{1 / 4}\right)^{3}} \\
& \sim(256)^{1 / 4}-\frac{1}{4\left((256)^{1 / 4}\right)^{3}} \sim 4-\frac{1}{4(4)^{3}} \\
& {\left[\because(256)^{1 / 4}=\left(4^{4}\right)^{1 / 4}=4\right]} \\
& \sim 4-\frac{1}{256}=\frac{1024-1}{256}=\frac{1023}{256} \sim 3.9961 .
\end{aligned}
$$

(ix) To find approximate value of $(82)^{1 / 4}$

Let

$$
\begin{equation*}
y=x^{1 / 4} \tag{i}
\end{equation*}
$$

$\therefore \quad \frac{d y}{d x}=\frac{1}{4} x^{-3 / 4}=\frac{1}{4 x^{3 / 4}}$
$\therefore \quad d y=\frac{d x}{4\left(x^{1 / 4}\right)^{3}} \sim \frac{\Delta x}{4\left(x^{1 / 4}\right)^{3}}$
Changing x to $x+\Delta x$ and y to $y+\Delta y$ in (i),

$$
\begin{equation*}
y+\Delta y=(x+\Delta x)^{1 / 4}=(82)^{1 / 4}=(81+1)^{1 / 4} \tag{iii}
\end{equation*}
$$

Comparing, $x=81$ and $\Delta x=1$
From (iii), (81) ${ }^{1 / 4}=y+\Delta y \sim y+d y$

$$
\begin{align*}
& \sim x^{1 / 4}+\frac{\Delta x}{4\left(x^{1 / 4}\right)^{3}} \quad[\text { From }(i) \text { and }(i i)] \tag{iv}\\
& \sim(81)^{1 / 4}+\frac{1}{4\left((81)^{1 / 4}\right)^{3}}=3+\frac{1}{4(3)^{3}} \\
& \sim 3+\frac{1}{108}=\frac{324+1}{108}=\frac{325}{108}=3.0092 .
\end{align*}
$$

(x) To find approximate value of $(401)^{1 / 2}=\sqrt{401}$

Let

$$
\begin{equation*}
y=x^{1 / 2}=\sqrt{x} \tag{i}
\end{equation*}
$$

$$
\begin{array}{ll}
\therefore & \frac{d y}{d x}=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}} \\
\therefore & d y=\frac{d x}{2 \sqrt{x}} \sim \frac{\Delta x}{2 \sqrt{x}} \tag{ii}
\end{array}
$$

Changing x to $x+\Delta x$ and y to $y+\Delta y$ in (i),

$$
\begin{equation*}
y+\Delta y=\sqrt{x+\Delta x}=\sqrt{401}=\sqrt{400+1} \tag{iii}
\end{equation*}
$$

Comparing, $x=400$ and $\Delta x=1$
From (iii), $\quad \sqrt{401}=y+\Delta y \sim y+d y$

$$
\begin{aligned}
& \sim \sqrt{x}+\frac{\Delta x}{2 \sqrt{x}} \\
& \sim \sqrt{400}+\frac{1}{2 \sqrt{400}}=20+\frac{1}{40}=\frac{800+1}{40}=\frac{801}{40} \sim 20.025
\end{aligned}
$$

(xi) To find approximate value of $(0.0037)^{1 / 2}=\sqrt{0.0037}$

Let $\quad y=\sqrt{x}$
$\therefore \quad \frac{d y}{d x}=\frac{1}{2 \sqrt{x}} \Rightarrow d y=\frac{d x}{2 \sqrt{x}} \sim \frac{\Delta x}{2 \sqrt{x}}$
Changing x to $x+\Delta x$ and y to $y+\Delta y$ in (i),
$y+\Delta y=\sqrt{x+\Delta x}=\sqrt{0.0037}=\sqrt{0.0036+0.0001}$
$(\because 0.0037-0.0036=0.0001)$
Comparing with $x+\Delta x, x=0.0036$ and $\Delta x=0.0001$
From (iii), $\sqrt{0.0037}=y+\Delta y \sim y+d y$

$$
\begin{array}{ll}
=\sqrt{x}+\frac{\Delta x}{2 \sqrt{x}} \\
\sim \sqrt{0.0036}+\frac{0.0001}{2 \sqrt{0.0036}} & \quad \text { (From (i) and (ii)) } \\
=0.06+\frac{0.0001}{2(0.06)} & {\left[(0.06)^{2}=0.0036\right]} \\
\sim 0.06+\frac{0.0001}{0.12} \sim 0.06+0.000833 \sim 0.060833
\end{array}
$$

(xii) To find approximate value of $(26.57)^{1 / 3}$

Let $\quad y=x^{1 / 3}$

$$
\begin{array}{ll}
\therefore & \frac{d y}{d x}=\frac{1}{3} x^{-2 / 3}=\frac{1}{3 \cdot x^{2 / 3}} \tag{i}\\
\Rightarrow & d y=\frac{d x}{3 \cdot x^{(2 / 3)}} \sim \frac{\Delta x}{3\left(x^{1 / 3}\right)^{2}}
\end{array}
$$

Changing x to $x+\Delta x$ and y to $y+\Delta y$ in (i),

$$
\begin{align*}
y+\Delta y & =(x+\Delta x)^{1 / 3}=(26.57)^{1 / 3} \\
& =(27-0.43)^{1 / 3} \quad \ldots(\text { iii }) \quad[\because 27-26.57=0.43] \tag{iv}
\end{align*}
$$

Comparing with $x+\Delta x, x=27$ and $\Delta x=-0.43$

From (iii), $(26.57)^{1 / 3}=y+\Delta y \sim x^{1 / 3}+\frac{\Delta x}{3\left(x^{1 / 3}\right)^{2}}$ (From (i) and (ii))

$$
\sim(27)^{1 / 3}-\frac{0.43}{3\left((27)^{1 / 3}\right)^{2}} \sim 3-\frac{0.43}{3(3)^{2}}
$$

$$
\sim 3-\frac{0.43}{27} \sim 3-0.0159 \sim 2.9841
$$

(xiii) To find approximate value of $(81.5)^{1 / 4}$

Let $\quad y=x^{1 / 4}$
$\therefore \quad \frac{d y}{d x}=\frac{1}{4} \cdot x^{-3 / 4}=\frac{1}{4 x^{(3 / 4)}}$
$\therefore \quad d y=\frac{d x}{4\left(x^{3 / 4}\right)} \sim \frac{\Delta x}{4\left(x^{1 / 4}\right)^{3}}$
Changing x to $x+\Delta x$ and y to $y+\Delta y$ in (i),

$$
\begin{equation*}
y+\Delta y=(x+\Delta x)^{1 / 4}=(81.5)^{1 / 4}=(81+0.5)^{1 / 4} \tag{iiii}
\end{equation*}
$$

Comparing with $x+\Delta x$ we have $x=81$ and $\Delta x=0.5$
From (iii), $(81.5)^{1 / 4}=y+\Delta y \sim y+d y$

$$
\begin{aligned}
& \sim x^{1 / 4}+\frac{\Delta x}{4\left(x^{1 / 4}\right)^{3}} \quad(\text { From }(\text { i }) \text { and }(i i)) \\
& \sim(81)^{1 / 4}+\frac{0.5}{4\left((81)^{1 / 4}\right)^{3}} \sim 3+\frac{0.5}{4(3)^{3}} \\
& \sim 3+\frac{0.5}{108} \sim 3+0.00462 \sim 3.00462 .
\end{aligned}
$$

(xiv) To find approximate value of $(3.968)^{3 / 2}$

Let $y=x^{3 / 2}=x^{2 / 2+1 / 2}=x^{1+1 / 2}$

$$
\begin{equation*}
=x^{1} x^{1 / 2}=x \sqrt{x} \tag{i}
\end{equation*}
$$

On looking at power (index) $\frac{3}{2}$ of 3.968

$$
\begin{equation*}
\therefore \quad \frac{d y}{d x}=\frac{3}{2} x^{1 / 2} \therefore \quad d y=\frac{3}{2} x^{1 / 2} d x \sim \frac{3}{2} \sqrt{x} \Delta x \tag{ii}
\end{equation*}
$$

Changing x to $x+\Delta x$ and y to $y+\Delta y$ in (i),
$y+\Delta y=(x+\Delta x)^{3 / 2}=(3.968)^{3 / 2}=(4-0.032)^{3 / 2}$
Comparing with $x+\Delta x$, we have $x=4$ and

$$
\begin{equation*}
\Delta x=-0.032 \tag{iv}
\end{equation*}
$$

From (iii), $(3.968)^{3 / 2}=y+\Delta y \sim y+d y$

$$
\begin{array}{lrl}
\sim x \sqrt{x}+\frac{3}{2} \sqrt{x} \Delta x & \text { (From (i) and (ii)) } \\
\sim 4 \sqrt{4}+\frac{3}{2} \sqrt{4}(-0.032) & {[\text { By }(i v)]}
\end{array}
$$

$$
\begin{aligned}
& \sim 4(2)-\frac{3}{2}(2)(0.032) \sim 8-3(0.032) \\
& \sim 8-0.096 \sim 7.904
\end{aligned}
$$

(xv) To find approximate value of $(32.15)^{1 / 5}$

Let $y=x^{1 / 5}$
$\therefore \quad \frac{d y}{d x}=\frac{1}{5} x^{-4 / 5}=\frac{1}{5 x^{4 / 5}} \therefore \quad d y=\frac{d x}{5 x^{4 / 5}} \sim \frac{\Delta x}{5\left(x^{1 / 5}\right)^{4}}$
Changing x to $x+\Delta x$ and y to $y+\Delta y$ in (i),

$$
\begin{equation*}
y+\Delta y=(x+\Delta x)^{1 / 5}=(32.15)^{1 / 5}=(32+0.15)^{1 / 5} \tag{iii}
\end{equation*}
$$

Comparing with $x+\Delta x$, we have $x=32$ and $\Delta x=0.15$
From (iii), $(32.15)^{1 / 5}=y+\Delta y \sim y+d y$

$$
\begin{aligned}
& \sim x^{1 / 5}+\frac{\Delta x}{5\left(x^{1 / 5}\right)^{4}} \\
& \sim(32)^{1 / 5}+\frac{0.15}{5\left((32)^{1 / 5}\right)^{4}} \sim 2+\frac{0.15}{5(2)^{4}}\left(\because \quad(32)^{1 / 5}=\left(2^{5}\right)^{1 / 5}=2\right) \\
& \sim 2+\frac{0.15}{80} \sim 2+0.001875 \sim 2.001875 .
\end{aligned}
$$

2. Find the approximate value of $f(2.01)$ where

$$
f(x)=4 x^{2}+5 x+2
$$

Sol. Let

$$
\begin{equation*}
y=f(x)=4 x^{2}+5 x+2 \tag{i}
\end{equation*}
$$

$\begin{array}{ll}\therefore & \frac{d y}{d x}=f^{\prime}(x)=8 x+5 \\ & \therefore\end{array} \quad d y=(8 x+5) d x \sim(8 x+5) \Delta x$
Changing x to $x+\Delta x$ and y to $y+\Delta y$ in (i),

$$
\begin{equation*}
y+\Delta y=f(x+\Delta x)=f(2.01)=f(2+0.01) \tag{ii}
\end{equation*}
$$

Comparing $f(x+\Delta x)$ with $f(2+0.01)$, we have

$$
x=2 \text { and } \Delta x=0.01
$$

From (iii), $f(2.01)=y+\Delta y \sim y+d y$
$\sim\left(4 x^{2}+5 x+2\right)+(8 x+5) \Delta x \quad$ (From (i) and (ii))
Putting $x=2$ and $\Delta x=0.01$ from (iv),

$$
\begin{aligned}
& \sim(4(4)+5(2)+2)+(8(2)+5)(0.01) \\
& \sim 28+21(0.01) \sim 28+0.21 \sim 28.21
\end{aligned}
$$

3. Find the approximate value of $\boldsymbol{f}(5.001)$ where

$$
f(x)=x^{3}-7 x^{2}+15
$$

Sol. Let

$$
\begin{equation*}
y=f(x)=x^{3}-7 x^{2}+15 \tag{i}
\end{equation*}
$$

$\therefore \quad \frac{d y}{d x}=f^{\prime}(x)=3 x^{2}-14 x$
$\therefore \quad d y=\left(3 x^{2}-14 x\right) d x \sim\left(3 x^{2}-14 x\right) \Delta x$
Changing x to $x+\Delta x$ and y to $y+\Delta y$ in (i),

$$
y+\Delta y=f(x+\Delta x)=f(5.001)=f(5+0.001)
$$

Comparing $f(x+\Delta x)$ with $f(5+0.001)$, we have $x=5$ and $\Delta x=0.001$

From (iii), $f(5.001)=y+\Delta y \sim y+d y$

$$
\sim\left(x^{3}-7 x^{2}+15\right)+\left(3 x^{2}-14 x\right) \Delta x(\text { From }(i) \text { and }(i i))
$$

Putting $x=5$ and $\Delta x=0.001$ from (iv), we have

$$
\begin{aligned}
& \sim(125-175+15)+(75-70)(0.001) \\
& \sim-35+5(0.001) \sim-35+0.005 \\
& \sim-34.995 .
\end{aligned}
$$

4. Find the approximate change in the volume of a cube of side x metres caused by increasing the side by 1%.
Sol. We know that volume of a cube of side x metres is given by

$$
\begin{array}{rlrl}
\mathrm{V} & =x^{3} \\
\therefore & \frac{d \mathrm{~V}}{d x} & =3 x^{2} \tag{ii}
\end{array}
$$

Given: Increase in side $=1 \%$ of $x=\frac{1}{100} x$
(Positive sign is being taken because it is given that side of cube is increasing)
i.e., $\quad \Delta x=\frac{x}{100}$

We know that approximate change in volume V of cube

$$
\begin{aligned}
& =\Delta \mathrm{V} \sim d \mathrm{~V}=\frac{d \mathrm{~V}}{d x} d x \\
& \sim \frac{d \mathrm{~V}}{d x} \Delta x \sim 3 x^{2}\left(\frac{x}{100}\right. \\
& \sim \frac{3}{100} x^{3} \\
& \sim 0.03 x^{3} \mathrm{~m}^{3} .
\end{aligned}
$$

$$
\sim \frac{d \mathrm{~V}}{d x} \Delta x \sim 3 x^{2}\left(\frac{x}{100}\right) \quad \text { I From (ii) and (iii) }
$$

5. Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%.
Sol. We know that surface area of a cube of side x is given by $\mathrm{S}=6 x^{2}$

$$
\therefore \quad \frac{d \mathrm{~S}}{d x}=12 x
$$

Decrease in side $=-1 \%$ of $x=-0.01 x \quad$ [Negative sign is being taken because it is given that side of the cube is decreasing]
$\Rightarrow \quad \Delta x=-0.01 x$
Approximate change in $S=$ Approximate value of ΔS

$$
\begin{aligned}
& =d \mathrm{~S}=\left(\frac{d \mathrm{~S}}{d x}\right) d x \\
& =(12 x)(-0.01 x) \\
& =-0.12 x^{2} \mathrm{~m}^{2}
\end{aligned} \quad[\because d x=\Delta x]
$$

Hence, the approximate change in surface is $-0.12 x^{2} \mathrm{~m}^{2}$, i.e., the surface decreases by approximately $0.12 x^{2} \mathrm{~m}^{2}$.
6. If the radius of a sphere is measured as 7 m with an error of 0.02 m , then find the approximate error in calculating its volume.

Sol. Let r be the radius of the sphere and Δr be the error in measuring the radius.
Then $r=7 \mathrm{~m}$ and $\Delta r=0.02 \mathrm{~m}$.
Volume of a sphere of radius r is given by $\mathrm{V}=\frac{4}{3} \pi r^{3}$

$$
\therefore \quad \frac{d \mathrm{~V}}{d r}=\frac{4}{3} \pi \cdot 3 r^{2}
$$

Approximate error in calculating the volume

$$
=\text { Approximate value of } \Delta \mathrm{V}
$$

$$
\begin{aligned}
& =d \mathrm{~V}=\left(\frac{d \mathrm{~V}}{d r}\right) d r=\left(\frac{4}{3} \pi 3 r^{2}\right) d r \\
& =4 \pi(7)^{2}(0.02) \\
& =3.92 \pi \mathrm{~m}^{3}=3.92 \times \frac{22}{7} \mathrm{~m}^{3} \\
& =12.32 \mathrm{~m}^{3}
\end{aligned}
$$

Hence, the approximate error in calculating volume is $12.32 \mathrm{~m}^{3}$.
7. If the radius of a sphere is measured as 9 m with an error of 0.03 m , then find the approximate error in calculating its surface area.
Sol. Let $x \mathrm{~m}$ be the radius of the sphere.
$\therefore \quad \mathrm{S}$, surface area of sphere $=4 \pi x^{2}$

$$
\begin{array}{lr}
\therefore & \frac{d \mathrm{~S}}{d x}=4 \pi(2 x)=8 \pi x \\
\therefore & d \mathrm{~S}=8 \pi x d x \sim 8 \pi x \Delta x \tag{i}
\end{array}
$$

Given: $x=9 \mathrm{~m}$ and error $\Delta x=0.03 \mathrm{~m}$
Putting $x=9$ and $\Delta x=0.03$ from (ii) in (i),
Error $\Delta \mathrm{S}$ in surface area of sphere

$$
\sim d \mathrm{~S}=8 \pi(9)(0.3)=72(0.03) \pi=2.16 \pi \mathrm{~m}^{2}
$$

(Note. Error can be positive or negative)
8. If $f(x)=3 x^{2}+15 x+5$, then the approximate value of $f(3.02)$ is
(A) 47.66
(B) 57.66
(C) 67.66
(D) 77.66.

Sol. Let $\quad y=f(x)=3 x^{2}+15 x+5$
$\therefore \quad \frac{d y}{d x}=f^{\prime}(x)=6 x+15$
$\therefore \quad d y=(6 x+15) d x \sim(6 x+15) \Delta x$
Changing x to $x+\Delta x$ and y to $y+\Delta y$ in (i),

$$
\begin{equation*}
y+\Delta y=f(x+\Delta x)=f(3.02)=f(3+0.02) \tag{iiii}
\end{equation*}
$$

Comparing $f(x+\Delta x)$ with $f(3+0.02)$, we have
$x=3$ and $\Delta x=0.02$
From (iii), $f(3.02)=y+\Delta y \sim y+d y$
$\sim\left(3 x^{2}+15 x+5\right)+(6 x+15) \Delta x \quad$ (From (i) and (ii))
$\sim(3(9)+15(3)+5)+(6(3)+15)(0.02)$
$=(72+5)+(33)(0.02)$

$$
\sim 77+0.66 \sim 77.66
$$

\therefore Option (D) is the correct answer.
9. The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
(A) $0.06 \boldsymbol{x}^{3} \mathrm{~m}^{3}$
(B) $0.6 x^{3} \mathrm{~m}^{3}$
(C) $0.09 x^{3} \mathrm{~m}^{3}$
(D) $0.9 x^{3} \mathrm{~m}^{3}$.

Sol. We know that volume of a cube of side x metres is given by

$$
\begin{equation*}
\mathrm{V}=x^{3} \tag{i}
\end{equation*}
$$

$\therefore \quad \frac{d \mathrm{~V}}{d x}=3 x^{2}$
Given: Increase in side of cube $=3 \%=\frac{3}{100} x$
(Positive sign is being taken because it is given that side of cube is increasing)
i.e.,

$$
\begin{equation*}
\Delta x=\frac{3 x}{100} \tag{iii}
\end{equation*}
$$

We know that approximate change in volume of cube

$$
\begin{aligned}
& =\Delta \mathrm{V}
\end{aligned} \sim d \mathrm{~V}=\frac{d \mathrm{~V}}{d x} d x, \quad \text { From (i) and (iii) }
$$

\therefore Option (C) is the correct answer.

