
Exercise 5.8 

( )
( )

f x
g x  (g(x) ≠≠≠≠≠ 0), sin x, cos x, ex, e–x, log x (x > 0) are conti-

nuous and derivable for all real x.
Note 2: Sum, difference, product of two continuous (derivable)
functions is continuous (derivable).
1. Verify Rolle’s theorem for f (x) = x2 + 2x – 8, x ∈∈∈∈∈ [– 4, 2].

Sol. Given: f (x) = x2 + 2x – 8; x ∈ [– 4, 2] ...(i)
Here f (x) is a polynomial function of x (of degree 2).
∴ f (x) is continuous and derivable everywhere i.e., on (– ∞, ∞).
Hence f (x) is continuous in the closed interval [– 4, 2] and
derivable in open interval (– 4, 2).
Putting x = – 4 in (i), f (– 4) = 16 – 8 – 8 = 0
Putting x = 2 in (i), f (2) = 4 + 4 – 8 = 0

∴ f (– 4) = f (2) (= 0)
∴ All three conditions of Rolle’s Theorem are satisfied.
From (i), f ′(x) = 2x + 2.
Putting x = c, f ′(c) = 2c + 2 = 0 ⇒ 2c = – 2

⇒ c = –
2
2

 = – 1 ∈ open interval (– 4, 2).

∴ Conclusion of Rolle’s theorem is true.
∴ Rolle’s theorem is verified.

2. Examine if Rolle’s theorem is applicable to any of the following
functions. Can you say some thing about the converse of Rolle’s
theorem from these examples?

(i) f (x) = [x] for x ∈∈∈∈∈ [5, 9]    (ii)  f (x) = [x] for x ∈∈∈∈∈ [– 2, 2]
(iii) f (x) = x2 – 1 for x ∈∈∈∈∈ [1, 2].

Sol. (i) Given: f (x) = [x] for x ∈ [5, 9] ...(i)
(of course [x] denotes the greatest integer ≤ x)
We know that bracket function [x] is discontinuous at all the
integers (See Ex. 15, page 155, NCERT, Part I). Hence
f (x) = [x] is discontinuous at all integers between 5 and 9 i.e.,
discontinuous at x = 6, x = 7 and x = 8 and hence discontinuous
in the closed interval [5, 9] and hence not derivable in the open
interval (5, 9). ...(ii) (... discontinuity ⇒ Non-derivability)
Again from (i), f (5) = [5] = 5 and f (9) = [9] = 9
∴ f (5) ≠ f (9)
∴ Conditions of Rolle’s Theorem are not satisfied.
∴ Rolle’s Theorem is not applicable to f (x) = [x] in the
closed interval [5, 9].
But converse (conclusion) of Rolle’s theorem is true for this
function f (x) = [x].
i.e., f ′(c) = 0 for every real c belonging to open interval



(5, 9) other than integers. (i.e., for every real c ≠ 6, 7, 8)
(even though conditions are not satisfied).
Let us prove it.

Left Hand derivative = Lf ′(c) = lim
x c−→

( ) ( )f x f c
x c

−
−
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[ ] [ ]x c
x c

−
−

(By (i))

Put x = c – h, h → 0+, =
0

lim
h +→

[ ] [ ]c h c
c h c
− −
− −
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[ ] [ ]c c
h
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−

[... We know that for c ∈ R – Z, as h → 0+, [c – h] = [c]]

=
0

lim
h +→

0
h−

 = 
0

lim
h +→

 0

(... h → 0+ ⇒ h > 0 and hence h ≠ 0)
= 0 ...(iii)

Right Hand derivative = Rf ′(c) = lim
x c+→

( ) ( )f x f c
x c

−
−

= lim
x c+→

[ ] [ ]x c
x c

−
−

(By (i))

Put x = c + h, h → 0+, =
0

lim
h +→

[ ] [ ]c h c
c h c
+ −
+ −

  =
0

lim
h +→

[ ] [ ]c c
h
−

[... We know that for c ∈ R – Z, as h → 0+, [c + h] = [c]]

=
0

lim
h +→

 0
h

 = 
0

lim
h +→

 0

(... h → 0+ ⇒ h > 0 and hence h ≠ 0)
= 0 ...(iv)

From (iii) and (iv) Lf ′(c)=R f ′(c) = 0
∴ f ′(c) = 0 V real c ∈ open interval (5, 9) other than integers
c = 6, 7, 8.

(ii) Given: f (x) = [x] for x ∈ [– 2, 2].
Reproduce the solution of (i) part replacing closed interval [5, 9]
by [– 2, 2] and integers 6, 7, 8 by – 1, 0 and 1 lying between – 2
and 2.

(iii) Given: f (x) = x2 – 1 for x ∈ [1, 2] ...(i)
Here f (x) is a polynomial function of x (of degree 2).
∴ f (x) is continuous and derivable everywhere i.e., on
(– ∞, ∞).
Hence f (x) is continuous in the closed interval [1, 2] and
derivable in the open interval (1, 2).
Again from (i), f (1) = 1 – 1 = 0



and f (2) = 22 – 1 = 4 – 1 = 3
∴ f (1) ≠ f (2).

∴ Conditions of Rolle’s Theorem are not satisfied.
∴ Rolle’s theorem is not applicable to f (x) = x2 – 1 in [1, 2].
Let us examine if converse (i.e., conclusion) is true for this function given
by (i).
From (i), f ′(x) = 2x

Put x = c, f ′(c) = 2c = 0 ⇒ c = 0 does not belong to open interval (1, 2).
∴ Converse (conclusion) of Rolle’s Theorem is also not true for this
function.

3. If f : [– 5, 5] →→→→→ R is a differentiable function and if f ′′′′′(x) does
not vanish anywhere, then prove that f (– 5) ≠≠≠≠≠ f (5).

Sol. Given: f : [– 5, 5] → R is a differentiable function i.e., f is
differentiable on its domain closed interval [– 5, 5] (and in particular in
open interval (– 5, 5) also) and hence is continuous also on closed
interval [– 5, 5] ...(i)
To prove:   f (– 5) ≠ f (5).
If possible, let f (– 5) = f (5) ...(ii)
From (i) and (ii) all the three conditions of Rolle’s Theorem are
satisfied.
∴ There exists at least one point c in the open interval (– 5, 5) such
that f ′(c) = 0.
i.e., f ′(x) = 0 i.e., f ′(x) vanishes (vanishes ⇒ zero) for at least
one value of x in the open interval (– 5, 5). But this is contrary to
given that f ′(x) does not vanish anywhere.
∴ Our supposition in (ii) i.e., f (– 5) = f (5) is wrong.
∴  f (– 5) ≠ f (5).

4. Verify Mean Value Theorem if f (x) = x2 – 4x – 3 in the interval
[a, b] where a = 1 and b = 4.

Sol. Given: f (x) = x2 – 4x – 3 in the interval [a, b] where a = 1 and
b = 4 i.e., in the interval [1, 4] ...(i)
Here f (x) is a polynomial function of x and hence is continuous and
derivable everywhere.
∴ f (x) is continuous in the closed interval [1, 4] and derivable in the
open interval (1, 4) also.
∴ Both conditions of L.M.V.T. are satisfied.
From (i),  f ′(x) = 2x – 4
Put x = c, f ′(c) = 2c – 4
from (i) f (a) = f (1) = 1 – 4 – 3 = – 6



and f (b) = f (4) = 16 – 16 – 3 = – 3

Putting these values in f ′(c) = 
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� �

−
−

, we have

2c – 4 =
� � ��

� �

− − −
−

⇒ 2c – 4 =
� �

�

− +

⇒ 2c – 4 = 
�

�
= 1 ⇒ 2c = 5

⇒ c =
�

�
∈ open interval (1, 4).

∴ L.M.V.T. is verified.
5. Verify Mean Value Theorem if f (x) = x3 – 5x2 – 3x in the interval

[a, b] where a = 1 and b = 3.  Find  all c ∈∈∈∈∈ (1, 3) for which
f ′′′′′(c) = 0.

Sol. Given: f (x) = x3 – 5x2 – 3x ...(i)
In the interval [a, b] where a = 1 and b = 3 i.e., in the
interval [1, 3].
Here f (x) is a polynomial function of x (of degree 3). Therefore, f (x) is
continuous and derivable everywhere i.e., on the real line (– ∞, ∞).
Hence f (x) is continuous in the closed interval [1, 3] and derivable in
open interval (1, 3).
∴ Both conditions of Mean Value Theorem are satisfied.
From (i), f ′(x) = 3x2 – 10x – 3
Put x = c, f ′(c) = 3c2 – 10c – 3 ...(ii)
From (i), f (a) = f (1) = 1 – 5 – 3 = 1 – 8 = – 7
and f (b) = f (3) = 33 – 5 . 32 – 3.3 = 27 – 45 – 9 = 27 – 54 = – 27
Putting these values in the conclusion of Mean Value Theorem i.e.,

 f ′(c) = 
� � 	 � �

	

� � � �
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, we have

3c2 – 10c – 3 = 
�
 � 
�

� �

− − −
−

 = 
�
 


�

− +
= – 

��

�
 = – 10

⇒ 3c2 – 10c – 3 + 10 = 0 ⇒ 3c2 – 10c + 7 = 0
⇒ 3c2 – 3c – 7c + 7 = 0 ⇒ 3c(c – 1) – 7(c – 1) = 0
⇒ (c – 1)(3c – 7) = 0
∴ Either c – 1 = 0  or 3c – 7 = 0

i.e., c = 1 ∉ open interval (1, 3) or 3c = 7 i.e., c = 



�

which belongs to open interval (1, 3).
Hence mean value theorem is verified.
Now we are to find all c ∈∈∈∈∈ (1, 3) for which f ′′′′′(c) = 0.
∴ From (ii), 3c2 – 10c – 3 = 0



Solving for c,   c = 
2 4

2
b b ac

a
− ± −

 = 
10 100 36

6
± +

=
10 136

6
±

=
10 4 34

6
± ×

 = 
10 2 34

6
±

= 2
5 34

6

 ±
   

 = 
5 34

3
±

Taking positive sign, c = 
5 34

3
+

> 3 and hence ∉ (1, 3)

Taking negative sign, c =
5 34

3
−

is negative and hence ∉ (1, 3).

6. Examine the applicability of Mean Value Theorem for all
the three functions being given below:

(i) f (x) = [x] for x ∈∈∈∈∈ [5, 9]  (ii) f (x) = [x] for x ∈∈∈∈∈ [– 2, 2]
(iii) f (x) = x2 – 1 for x ∈∈∈∈∈ [1, 2].

Sol. (i) Reproduce solution of Q. No. 2(i) upto eqn. (ii)

∴ Both conditions of L.M.V.T. are not satisfied.

∴ L.M.V.T. is not applicable to f (x) = [x] for x ∈ [5, 9].

(ii) Reproduce solution of Q. No. 2(i) upto eqn. (ii) replacing [5,
9] by [– 2, 2] and integers 6, 7, 8 by – 1, 0 and 1 lying
between – 2 and 2.

∴ Both conditions of L.M.V.T. are not satisfied.

∴ L.M.V.T. is not applicable to f (x) = [x] for x ∈ [– 2, 2].

(iii) Given: f (x) = x2 – 1 for x ∈ [1, 2] ...(i)

Here f (x) is a polynomial function (of degree 2).

Therefore f (x) is continuous and derivable everywhere i.e.,
on the real line (– ∞, ∞).

Hence f (x) is continuous in the closed interval [1, 2] and
derivable in open interval (1, 2).

∴ Both conditions of Mean Value Theorem are satisfied.

From (i), f ′(x) = 2x

Put x = c, f ′(c) = 2c

From (i), f (a) = f (1) = 12 – 1 = 1 – 1 = 0

f (b) = f (2) = 22 – 1 = 4 – 1 = 3
Putting these values in the conclusion of Mean Value

Theorem i.e., in f ′(c) = 
( ) ( )f b f a

b a
−
−

, we have

2c  = 
3 0
2 1

−
−

⇒ 2c = 3

⇒ c =
3
2

∈ (1, 2)

∴ Mean Value Theorem is verified.




