Book Name: NCERT Solutions

Exercise 2.1

Question 1:

Find The principal value of $\sin^{-1}\left(-\frac{1}{2}\right)$

Solution 1:

Let
$$\sin^{-1}\left(-\frac{1}{2}\right) = y$$
,

Then Sin y=
$$\left(-\frac{1}{2}\right)$$

$$=-\sin\left(\frac{\pi}{6}\right)=\sin\left(-\frac{\pi}{6}\right).$$

Range of the principal value of $\sin^{-1} x$ is

$$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$
 and $\sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$,

Thus, the principal value of $\sin^{-1}\left(-\frac{1}{2}\right)is - \frac{\pi}{6}$,

Question 2:

Find the principal value of $\cos^{-1} \left(\frac{\sqrt{3}}{2} \right)$

Solution 2:

Let
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = y$$
.

$$\Rightarrow \cos y = \frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{6}\right)$$

Range of the principal value of $\cos^{-1} x$ is

$$[0,\pi]$$
 and $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$.

Thus, the principal value of $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is $\frac{\pi}{6}$.

Question 3:

Find the principal value of $\csc^{-1}(2)$

Solution 3:

Let $\operatorname{cosec}^{-1}(2) = y$.

$$\Rightarrow$$
 cosec y = 2 = cosec $\left(\frac{\pi}{6}\right)$.

Range of the principal value of $\csc^{-1}x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$.

Thus, the principal value of $\csc^{-1}(2)$ is $\frac{\pi}{6}$.

Question 4:

Find the principal value of $tan^{-1}(-\sqrt{3})$

Solution 4:

Let $\tan^{-1}\left(-\sqrt{3}\right) = y$.

$$\Rightarrow \tan y = -\sqrt{3} = -\tan\frac{\pi}{3} = \tan\left(-\frac{\pi}{3}\right).$$

Range of the principal value of $tan^{-1} x$ is

$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 and $\tan\left(-\frac{\pi}{3}\right)$ is $-\sqrt{3}$.

Thus, known that the principal value of $\tan^{-1}(-\sqrt{3})$ is $-\frac{\pi}{3}$.

Question 5:

Find the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$

Solution 5:

Let $\cos^{-1}\left(-\frac{1}{2}\right) = y$.

$$\Rightarrow \cos y = -\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right).$$

Range of the principal value of $\cos^{-1} x$ is

$$\left[0,\pi\right]$$
 and $\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$.

Thus, the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$ is $\left(\frac{2\pi}{3}\right)$.

Question 6:

Find the principal value of $tan^{-1}(-1)$

Solution 6:

Let $\tan^{-1}(-1) = y$.

$$\Rightarrow \tan y = -1 = -\tan\left(\frac{\pi}{4}\right)$$

$$=\tan\left(-\frac{\pi}{4}\right).$$

Range of the principal value of $\tan^{-1} x$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan\left(-\frac{\pi}{4}\right) = -1$.

Thus, the principal value of $\tan^{-1}(-1)$ is $-\frac{\pi}{4}$.

Question 7:

Find the principal value of

Solution 7:

Let
$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = y$$
.

$$\Rightarrow$$
 sec $y = \frac{2}{\sqrt{3}} = \sec\left(\frac{\pi}{6}\right)$.

Range of the principal value of $\sec^{-1} x$ is $\left[0, \pi\right] - \left\{\frac{\pi}{2}\right\}$ and $\sec\left(\frac{\pi}{6}\right) = \frac{2}{\sqrt{3}}$.

Thus, the principal value of $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$ is $\frac{\pi}{6}$.

Question 8:

Find the principal value of $\cot^{-1}(\sqrt{3})$

Solution 8:

Let
$$\cot^{-1}(\sqrt{3}) = y$$
.

$$\Rightarrow \cot y = \sqrt{3} = \cot\left(\frac{\pi}{6}\right).$$

Range of the principal value of $\cot^{-1} x$ is (0,n) and $\cot\left(\frac{\pi}{6}\right) = \sqrt{3}$. Thus, the principal value of $\cot^{-1}\left(\sqrt{3}\right)$ is $\frac{\pi}{6}$.

Question 9:

Find the principal value of $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$

Solution 9:

Let
$$\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = y$$
.

$$\Rightarrow \cos y = -\frac{1}{\sqrt{2}}$$
$$= -\cos\left(\frac{\pi}{4}\right)$$
$$= \cos\left(\pi - \frac{\pi}{4}\right)$$

$$=\cos\left(\frac{3\pi}{4}\right).$$

Range of the principal value of $\cos^{-1} x$ is [0, n] and $\cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}}$.

Thus, the principal value of $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ is $\frac{3\pi}{4}$.

Question 10:

Find the principal value of $\csc^{-1}(-\sqrt{2})$

Solution 10:

Let $\csc^{-1}\left(-\sqrt{2}\right) = y$.

$$\Rightarrow \csc y = -\sqrt{2}$$
$$= -\csc\left(\frac{\pi}{4}\right)$$
$$= \cos ec\left(-\frac{\pi}{4}\right)$$

Range of the principal value of $\csc^{-1}x$ is

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$$
 and $\csc\left(-\frac{\pi}{4}\right) = -\sqrt{2}$.

Thus, the principal value of $\csc^{-1}(-\sqrt{2})$ is $-\frac{\pi}{4}$.

Question 11:

Find the value of $\tan^{-1}(1) + \cos^{-1}(-\frac{1}{2}) + \sin^{-1}(-\frac{1}{2})$

Solution 11:

Let $\tan^{-1}(1) = x$.

$$\Rightarrow \tan x = 1 = \tan \frac{\pi}{4}$$
.

$$\therefore \tan^{-1}(1) = \frac{\pi}{4}$$

Let
$$\cos^{-1}\left(-\frac{1}{2}\right) = y$$
.

$$\Rightarrow \cos y = -\frac{1}{2}$$

$$=-\cos\left(\frac{\pi}{3}\right)$$

$$=\cos\left(\pi-\frac{\pi}{3}\right)$$

$$=\cos\left(\frac{2\pi}{3}\right)$$
.

$$\therefore \cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$

Let
$$\sin^{-1}\left(-\frac{1}{2}\right) = z$$

$$\Rightarrow \sin z = -\frac{1}{2}$$

$$=-\sin\left(\frac{\pi}{6}\right)$$

$$=\sin\left(-\frac{\pi}{6}\right)$$

$$\therefore \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$

$$\therefore \cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$
Let $\sin^{-1}\left(-\frac{1}{2}\right) = z$.
$$\Rightarrow \sin z = -\frac{1}{2}$$

$$= -\sin\left(\frac{\pi}{6}\right)$$

$$= \sin\left(-\frac{\pi}{6}\right)$$
.
$$\therefore \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$

$$\therefore \tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$$

$$= \frac{\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{6}$$

$$= \frac{3\pi + 8\pi - 2\pi}{12}$$

$$= \frac{9\pi}{12}$$

$$=\frac{\pi}{4}+\frac{2\pi}{3}-\frac{\pi}{6}$$

$$=\frac{3\pi + 8\pi - 2\pi}{12}$$

$$=\frac{9\pi}{12}$$

$$=\frac{3\pi}{4}$$

Question 12:

Find the value of $\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right)$

Solution 12:

Let
$$\cos^{-1}\left(\frac{1}{2}\right) = x$$
.

$$\Rightarrow \cos x = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right).$$

$$\therefore \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$$

Let
$$\sin^{-1}\left(\frac{1}{2}\right) = y$$
.

$$\Rightarrow \sin y = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right).$$

$$\therefore \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

$$\therefore \cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} + \frac{2\pi}{6} + \frac{\pi}{3} + \frac{\pi}{3}$$

$$-\frac{2\pi}{3}$$

Question 13:

Find the value of if $\sin^{-1} x = y$, then

(A)
$$0 \le y \le \pi$$
 (B) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ (C) $0 < y < \pi$ (D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Solution 13:

It is given that $\sin^{-1} x = y$.

Range of the principal value of $\sin^{-1} x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.

Thus,
$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$
.

Question 14:

Find the value of $\tan^{-1} \sqrt{3} - \sec^{-1} (-2)$ is equal to

(A) 0 (B)
$$-\frac{\pi}{3}$$
 (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$

Solution 14:

Let
$$\tan^{-1} \sqrt{3} = x$$
.

$$\Rightarrow \tan x = \sqrt{3} = \tan \frac{\pi}{3}$$

Range of the principal value of $\tan^{-1} x$ is $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.

$$\therefore \tan^{-1} \sqrt{3} = \frac{\pi}{3}$$

Let
$$\sec^{-1}(-2) = y$$
.

$$\Rightarrow$$
 sec $y = -2$

$$=-\sec\left(\frac{\pi}{3}\right)$$

$$=\sec\left(\pi-\frac{\pi}{3}\right)$$

$$=\sec\frac{2\pi}{3}$$
.

Range of the principal value of $\sec^{-1} x$ is $[0,\pi] - \left\{\frac{\pi}{2}\right\}$.

$$\therefore \sec^{-1}\left(-2\right) = \frac{2\pi}{3}$$

Thus,
$$\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2) = \frac{\pi}{3} - \frac{2\pi}{3} = -\frac{\pi}{3}$$