Exercise 1.1

Question 1: Determine whether each of the following relations are reflexive, symmetric and transitive.

- (i) Relation R in the set $A = \{1, 2, 3...13, 14\}$ defined as $R = \{(x, y): 3x y = 0\}$
- (ii) Relation R in the set N of natural numbers defined as $R = \{(x, y): y = x + 5 \text{ and } x < 4\}$
- (iii) Relation R in the set A = $\{1, 2, 3, 4, 5, 6\}$ as R= $\{(x, y): y \text{ is divisible by } x\}$
- (iv) Relation R in the set Z of all integers defined as $R = \{(x, y): x y \text{ is as integer}\}$
- (v) Relation R in the set A of human beings in a town at a particular time given by
 - (a) $R = \{(x, y): x \text{ and } y \text{ work at the same place}\}$
 - (b) R = {(x, y): x and y live in the same locality}
 - (c) $R = \{(x, y): x \text{ is exactly 7 cm taller than y}\}$
 - (d) $R = \{(x, y): x \text{ is wife of } y\}$
 - (e) $R = \{(x, y): x \text{ is father of } y\}$

Solution:

(i)

$$R = \{(1, 3), (2, 6), (3, 9), (4, 12)\}$$

R is not reflexive because (1, 1), (2, 2) ... and $(14, 14) \notin R$.

R is not symmetric because $(1, 3) \in \mathbb{R}$, but $(3, 1) \notin \mathbb{R}$. [since $3(3) - 1 \neq 0$]

R is not transitive because (1, 3) and $(3, 9) \in \mathbb{R}$, but $(1, 9) \notin \mathbb{R}$. $[3(1) - 9 \neq 0]$

So, R is not reflexive, symmetric or transitive.

(ii)

$$R = \{(1, 6), (2, 7), (3, 8)\}$$

 $(1, 1) \notin R$.

So R is not reflexive.

 $(1, 6) \in R$ but $(6, 1) \notin R$.

So R is not symmetric.

There isn't any ordered pair in R such that (x, y) and (y, z) both $\in R$, so (x, z) cannot belong to R.

So R is not transitive.

Hence, R is neither reflexive, nor symmetric, nor transitive.

(iii)

 $R = \{(x, y) : y \text{ is divisible by } x\}$

We know that any number other than 0 is divisible by itself.

Thus, $(x, x) \in R$

So, R is reflexive.

 $(2, 4) \in R$ [because 4 is divisible by 2]

But $(4, 2) \notin R$ [since 2 is not divisible by 4]

So, R is not symmetric.

Let (x, y) and $(y, z) \in R$. So, y is divisible by x and z is divisible by y.

So, z is divisible by $x \Rightarrow (x, z) \in R$

So, R is transitive.

So, R is reflexive and transitive but not symmetric.

(iv)

 $R = \{(x, y): x - y \text{ is an integer}\}$

For $x \in \mathbf{Z}$, $(x, x) \in \mathbf{R}$ because x - x = 0 is an integer

So, R is reflexive.

For $x, y \in \mathbf{Z}$, if $(x, y) \in R$, then x - y is an integer $\Rightarrow (y - x)$ is an integer.

So, $(y, x) \in R$

So, R is symmetric.

Let (x, y) and $(y, z) \in R$, where $x, y, z \in \mathbf{Z}$.

 \Rightarrow (x - y) and (y - z) are integers.

 \Rightarrow x - z = (x - y) + (y - z) is an integer.

So,
$$(x, z) \in R$$

So, R is transitive.

So, R is reflexive, symmetric, and transitive.

(v)

(a)

 $R = \{(x, y): x \text{ and } y \text{ work at the same place}\}$

$$\Rightarrow$$
 (x, x) \in R

So, R is reflexive.

If $(x, y) \in R$, then x and y work at the same place \Rightarrow y and x also work at the same place.

$$\Rightarrow$$
 (y, x) \in R.

So, R is symmetric.

Let
$$(x, y)$$
, $(y, z) \in R$

Let (x, y), $(y, z) \in R$ \Rightarrow x and y work at the same place and y and z work at the same place.

 \Rightarrow x and z also work at the same place.

$$\Rightarrow$$
 (x, z) \in R

So, R is transitive.

So, R is reflexive, symmetric and transitive.

(b)

 $R = \{(x, y): x \text{ and } y \text{ live in the same locality}\}$

$$(x, x) \in R$$

So, R is reflexive.

If $(x, y) \in R$, then x and y live in the same locality.

 \Rightarrow y and x also live in the same locality.

$$\Rightarrow$$
 (y, x) \in R

So, R is symmetric.

Let $(x, y) \in R$ and $(y, z) \in R$.

 \Rightarrow x and y live in the same locality and y and z live in the same locality.

 \Rightarrow x and z also live in the same locality.

 \Rightarrow (x, z) \in R

So, R is transitive.

So, R is reflexive, symmetric and transitive.

(c)

 $R = \{(x, y): x \text{ is exactly 7 cm taller than y}\}$

Clearly, $(x, x) \notin R$

So, R is not reflexive.

Let $(x, y) \in R \Rightarrow x$ is exactly 7 cm taller than y.

Then, y is clearly not taller than x.

∴
$$(y, x) \notin R$$

So, R is not symmetric.

Let (x, y), $(y, z) \in \mathbb{R}$.

 \Rightarrow x is exactly 7 cm taller than y and y is exactly 7 cm taller than z.

 \Rightarrow x is exactly 14 cm taller than z.

So, $(x, z) \notin R$

So, R is not transitive.

So, R is not reflexive, symmetric or transitive.

(d)

 $R = \{(x, y): x \text{ is the wife of } y\}$

Clearly, $(x, x) \notin R$

So, R is not reflexive.

Let $(x, y) \in R$

 \Rightarrow x is the wife of y.

So y is not the wife of x.

∴ $(y, x) \notin R$

So, R is not transitive.

Let (x, y), $(y, z) \in R$

 \Rightarrow x is the wife of y and y is the wife of z, which is not possible.

 \therefore (x, z) \notin R

So, R is not transitive.

So, R is not reflexive, symmetric or transitive.

(e)

 $R = \{(x, y): x \text{ is the father of } y\}$

Clearly $(x, x) \notin R$

So, R is not reflexive.

Let $(x, y) \in R$

 \Rightarrow x is the father of y.

 \Rightarrow y is not the father of x.

∴ (y, x) ∉ R

So, R is not symmetric.

Let $(x, y) \in R$ and $(y, z) \in R$.

 \Rightarrow x is the father of y and y is the father of z.

 \Rightarrow x is not the father of z.

∴ $(x, z) \notin R$

∴So, R is not transitive.

So, R is not reflexive, symmetric or transitive.

Question 2: Show that the relation R in the set **R** of real numbers, defined as $R = \{(a, b): a \le b^2\}$ is neither reflexive nor symmetric nor transitive.

Solution:

(i)
$$R = \{(a, b): a \le b^2\}$$

$$(\frac{1}{2},\frac{1}{2}) \notin R$$
,

$$\frac{1}{2} > \left(\frac{1}{2}\right)^2$$
Because,

R is not reflexive.

$$(1, 4) \in R \text{ as } 1 < 4$$

But, 4 is not less than 12.

∴ R is not symmetric.

$$(3, 2), (2, 1.5) \in R$$

[Because
$$3 < 2^2 = 4$$
 and $2 < (1.5)^2 = 2.25$]

$$3 > (1.5)^2 = 2.25$$

∴ R is not transitive.

R is neither reflexive, nor symmetric, nor transitive.

Question 3: Check whether the relation R defined in the set $\{1, 2, 3, 4, 5, 6\}$ as $R = \{(a, b): b = a + 1\}$ is reflexive, symmetric or transitive.

Solution:

$$A = \{1, 2, 3, 4, 5, 6\}.$$

$$R = \{(a, b): b = a + 1\}$$

$$R = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)\}$$

$$(a, a) \notin R, a \in A.$$

$$(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) \notin R$$

∴ R is not reflexive.

$$(1, 2) \in R$$
, but $(2, 1) \notin R$.

∴ R is not symmetric.

$$(1, 2), (2, 3) \in R$$

∴ R is not transitive

R is neither reflexive, nor symmetric, nor transitive.

Question 4: Show that the relation R in **R** defined as $R = \{(a, b): a \le b\}$, is reflexive and transitive but not symmetric.

Solution:

$$R = \{(a, b): a \le b\}$$

$$(a, a) \in R$$

∴ R is reflexive.

$$(2, 4) \in R \text{ (as } 2 < 4)$$

$$(4, 2) \notin R \text{ as } 4 > 2.$$

∴ R is not symmetric.

$$(a, b), (b, c) \in R.$$

 $a \le b$ and $b \le c$

$$\Rightarrow$$
 a \leq c

$$\Rightarrow$$
 (a, c) \in R

∴ R is transitive.

R is reflexive and transitive but not symmetric

Question 5: Check whether the relation R in **R** defined as $R = \{(a, b): a \le b^3\}$ is reflexive, symmetric or transitive.

Solution:

$$R = \{(a, b): a \le b^3\}$$

$$(\frac{1}{2}, \frac{1}{2}) \notin R$$
, since, $\frac{1}{2} > (\frac{1}{2})^3$

∴ R is not reflexive.

$$(1, 2) \in R$$
 (as $1 < 2^3 = 8$)

$$(2, 1) \notin R (as 2^3 > 1)$$

∴ R is not symmetric.

$$(3, \frac{3}{2}), (\frac{3}{2}, \frac{6}{5}) \in \mathbb{R}, \text{ since } 3 < (\frac{3}{2})^2 \text{ and } \frac{3}{2} < (\frac{6}{5})^3$$

$$(3, \frac{6}{5}) \notin R \text{ as } 3 > \frac{6}{5}$$

∴ R is not transitive.

R is neither reflexive, nor symmetric, nor transitive.

Question 6: Show that the relation R in the set $\{1, 2, 3\}$ given by R = $\{(1, 2), (2, 1)\}$ is symmetric but neither reflexive nor transitive.

Solution:

$$A = \{1, 2, 3\}.$$

 $R = \{(1, 2), (2, 1)\}.$

 $(1, 1), (2, 2), (3, 3) \notin R.$

∴ R is not reflexive.

 $(1, 2) \in R$ and $(2, 1) \in R$, then R is symmetric.

(1, 2) and $(2, 1) \in R$

 $(1, 1) \notin R$

∴ R is not transitive.

R is symmetric but neither reflexive nor transitive.

Question 7: Show that the relation R in the set A of all the books in a library of a college, given by $R = \{(x, y): x \text{ and } y \text{ have same number of pages}\}$ is an equivalence relation.

Solution:

 $R = \{x, y\}$: x and y have the same number of pages

R is reflexive since $(x, x) \in R$ as x and x have same number of pages.

 $(x, y) \in \mathbb{R} \Rightarrow x$ and y have the same number of pages.

 \Rightarrow y and x have the same number of pages.

 \Rightarrow (y, x) \in R

∴ R is symmetric.

 $(x, y) \in R$ and $(y, z) \in R$.

 \Rightarrow x and y and have same number of pages and y and z have same number of pages.

 \Rightarrow x and z have same number of pages.

 \Rightarrow (x, z) \in R

R is transitive.

R is an equivalence relation.

Question 8: Show that the relation R in the set A = $\{1, 2, 3, 4, 5\}$ given by $R = \{(a, b): |a - b| \text{ is even}\}$, is an equivalence relation. Show that all the elements of $\{1, 3, 5\}$ are related to each other and all the elements of $\{2, 4\}$ are related to each other. But no element of $\{1, 3, 5\}$ is related to any element of $\{2, 4\}$.

Solution:

 $a \in A$,

|a-a| = 0 (which is even).

∴ R is reflexive.

 $(a, b) \in R$.

 $\Rightarrow |a - b|$ is even

 \Rightarrow |-(a-b)|= |b - a| is also even

 \Rightarrow (b, a) \in R

∴ R is symmetric.

 $(a, b) \in R$ and $(b, c) \in R$.

 \Rightarrow |a-b| is even and |b-c| is even

 \Rightarrow (a-b) is even and (b-c) is even

 \Rightarrow (a-c) = (a-b) + (b-c) is even

 $\Rightarrow |a - b|$ is even.

 \Rightarrow (a, c) \in R

∴ R is transitive.

R is an equivalence relation.

all elements of {1, 3, 5} are related to each other because they are all odd. So, the modulus of the difference between any two elements is even.

Similarly, all elements of {2, 4} are related to each other because they are all even.

no element of $\{1, 3, 5\}$ can be related to any element of $\{2, 4\}$ as all elements of $\{1, 3, 5\}$ are odd and all elements of $\{2, 4\}$ are even. So, the modulus of the difference between the two elements (from each of these two subsets) will not be even.

Question 9: Show that each of the relation R in the set A = $\{x \in Z: 0 \le x \le 12\}$, given by

(i) $R = \{(a, b) : |a - b| \text{ is a multiple of 4}\}$

(ii)
$$R = \{(a, b) : a = b\}$$

is an equivalence relation. Find the set of all elements related to 1 in each case.

Solution:

 $A = \{x \in \boldsymbol{Z} \colon 0 \leq x \leq 12\} = \{0,\,1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9,\,10,\,11,\,12\}$

(i) $R = \{(a, b): |a - b| \text{ is a multiple of 4}\}$

 $a \in A$, $(a, a) \in R$ as |a - a| = 0 is a multiple of 4.

∴ R is reflexive.

 $(a, b) \in R \Rightarrow |a - b|$ is a multiple of 4.

 \Rightarrow | - (a - b) | = |b - a| is a multiple of 4.

 \Rightarrow (b, a) \in R

∴ R is symmetric.

 $(a, b), (b, c) \in R.$

 \Rightarrow |a - b| is a multiple of 4 and |b - c| is a multiple of 4.

 \Rightarrow (a – b) is a multiple of 4 and (b – c) is a multiple of 4.

 \Rightarrow (a - c) = (a - b) + (b - c) is a multiple of 4.

 \Rightarrow |a - c| is a multiple of 4.

 \Rightarrow (a, c) \in R

∴ R is transitive.

R is an equivalence relation.

The set of elements related to 1 is {1, 5, 9} as

|1-1|=0 is a multiple of 4.

|5-1|=4 is a multiple of 4.

|9-1| = 8 is a multiple of 4.

- (ii) $R = \{(a, b): a = b\}$
- $a \in A$, $(a, a) \in R$, since a = a.
- ∴ R is reflexive.
- $(a, b) \in R$.
- \Rightarrow a = b
- \Rightarrow b = a \Rightarrow (b, a) \in R
- ∴ R is symmetric.
- $(a, b) \in R$ and $(b, c) \in R$.
- \Rightarrow a = b and b = c
- \Rightarrow a = c
- \Rightarrow (a, c) \in R
- ∴ R is transitive.

R is an equivalence relation.

the set of elements related to 1 is {1}.

Question 10: Given an example of a relation. Which is

- (i) Symmetric but neither reflexive nor transitive.
- (ii) Transitive but neither reflexive nor symmetric.

- (iii)Reflexive and symmetric but not transitive.
- (iv) Reflexive and transitive but not symmetric.
- (v) Symmetric and transitive but not reflexive

Solution:

(i)
$$A = \{5, 6, 7\}.$$

$$R = \{(5, 6), (6, 5)\}.$$

R is not reflexive as (5, 5), (6, 6), $(7, 7) \notin R$.

 $(5, 6) \in R$ and $(6, 5) \in R$, R is symmetric.

$$\Rightarrow$$
 (5, 6), (6, 5) ∈ R, but (5, 5) ∉ R

∴ R is not transitive.

relation R is symmetric but not reflexive or transitive.

(ii)

$$R = \{(a, b): a < b\}$$

 $a \in R$, $(a, a) \notin R$ since a cannot be strictly less than itself.

∴ R is not reflexive.

$$(1, 2) \in R$$
 (as $1 < 2$)

But, 2 is not less than 1.

$$\therefore$$
 (2, 1) \notin R

∴ R is not symmetric.

$$(a, b), (b, c) \in R.$$

 \Rightarrow a < b and b < c

$$\Rightarrow$$
 a < c

$$\Rightarrow$$
 (a, c) \in R

∴ R is transitive.

relation R is transitive but not reflexive and symmetric.

(iii)
$$A = \{4, 6, 8\}.$$

$$A = \{(4, 4), (6, 6), (8, 8), (4, 6), (6, 4), (6, 8), (8, 6)\}$$

R is reflexive since for $a \in A$, $(a, a) \in R$

R is symmetric since $(a, b) \in R \Rightarrow (b, a) \in R$ for $a, b \in R$.

R is not transitive since (4, 6), $(6, 8) \in R$, but $(4, 8) \notin R$.

R is reflexive and symmetric but not transitive.

(iv)

R = {a, b):
$$a^3 \ge b^3$$
}

Clearly
$$(a, a) \in R$$

∴ R is reflexive.

$$(2, 1) \in R$$

∴ R is not symmetric.

$$(a, b), (b, c) \in R.$$

$$\Rightarrow$$
 a³ \geq b³ and b³ \geq c³

$$\Rightarrow a^3 \ge c^3$$

$$\Rightarrow$$
 (a, c) \in R

∴ R is transitive.

R is reflexive and transitive but not symmetric.

(v) Let
$$A = \{-5, -6\}$$
.

$$R = \{(-5, -6), (-6, -5), (-5, -5)\}$$

R is not reflexive as $(-6, -6) \notin R$.

$$(-5, -6), (-6, -5) \in R.$$

$$(-5, -5) \in R$$
.

R is transitive.

R is symmetric and transitive but not reflexive.

Question 11: Show that the relation R in the set A of points in a plane given by $R = \{(P, Q): Distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all point related to a point <math>P \neq (0, 0)$ is the circle passing through P with origin as centre.

Solution: $R = \{(P, Q): Distance of P from the origin is the same as the distance of Q from the origin \}$

Clearly, $(P, P) \in R$

∴ R is reflexive.

 $(P, Q) \in R$.

Clearly R is symmetric.

 $(P, Q), (Q, S) \in R.$

⇒ The distance of P and Q from the origin is the same and also, the distance of Q and S from the origin is the same.

⇒ The distance of P and S from the origin is the same.

 \Rightarrow (P, S) \in R

∴ R is transitive.

R is an equivalence relation.

The set of points related to $P \neq (0, 0)$ will be those points whose distance from origin is same as distance of P from the origin.

set of points forms a circle with the centre as origin and this circle passes through P.

Question 12: Show that the relation R defined in the set A of all triangles as $R = \{(T_1, T_2): T_1 \text{ is similar to } T_2\}$, is equivalence relation. Consider three right angle triangles T_1 with sides 3, 4, 5, T_2 with sides 5, 12, 13 and T_3 with sides 6, 8, 10. Which triangles among T_1 , T_2 and T_3 are related?

Solution: $R = \{(T_1, T_2): T_1 \text{ is similar to } T_2\}$

R is reflexive since every triangle is similar to itself.

If $(T_1, T_2) \in R$, then T_1 is similar to T_2 .

 \Rightarrow T₂ is similar to T₁.

$$\Rightarrow (T_2,\,T_1) \in R$$

∴ R is symmetric.

$$(T_1, T_2), (T_2, T_3) \in R.$$

 \Rightarrow T₁ is similar to T₂ and T₂ is similar to T₃.

 \Rightarrow T₁ is similar to T3.

$$\Rightarrow (T_1,\,T_3) \in R$$

∴ R is transitive.

R is an equivalence relation.

$$\frac{3}{6} = \frac{4}{8} = \frac{5}{10} \left(= \frac{1}{2} \right)$$

:The corresponding sides of triangles T_1 and T_3 are in the same ratio.

triangle T₁ is similar to triangle T₃.

Hence, T_1 is related to T_3 .

Question 13: Show that the relation R defined in the set A of all polygons as $R = \{(P_1, P_2): P_1 \text{ and } P_2 \text{ have same number of sides}\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?

Solution:

 $R = \{(P_1, P_2): P_1 \text{ and } P_2 \text{ have same number of sides}\}$

R is reflexive,

 $(P_1, P_1) \in R$, as same polygon has same number of sides.

$$(P_1, P_2) \in R$$
.

- \Rightarrow P₁ and P₂ have same number of sides.
- \Rightarrow P₂ and P₁ have same number of sides.

$$\Rightarrow$$
 (P₂, P₁) \in R

∴ R is symmetric.

$$(P_1, P_2), (P_2, P_3) \in R.$$

 \Rightarrow P₁ and P₂ have same number of sides.

P₂ and P₃ have same number of sides.

 \Rightarrow P₁ and P₃ have same number of sides.

$$\Rightarrow$$
 (P₁, P₃) \in R

∴ R is transitive.

R is an equivalence relation.

The elements in A related to right-angled triangle (T) with sides 3, 4, and 5 are those polygons which have 3 sides

set of all elements in A related to triangle T is the set of all triangles.

Question 14: Let L be the set of all lines in XY plane and R be the relation in L defined as $R = \{(L_1, L_2): L_1 \text{ is parallel to } L_2\}$. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.

Solution:

$$R = \{(L_1, L_2): L1 \text{ is parallel to } L_2\}$$

R is reflexive as any line L1 is parallel to itself i.e., $(L_1, L_1) \in R$.

$$(L_1, L_2) \in R$$
.

 \Rightarrow L₁ is parallel to L₂ \Rightarrow L₂ is parallel to L₁.

$$\Rightarrow$$
 (L₂, L₁) \in R

∴ R is symmetric.

$$(L_1, L_2), (L_2, L_3) \in R.$$

 \Rightarrow L₁ is parallel to L₂.

L₂ is parallel to L₃.

 \Rightarrow L₁ is parallel to L₃.

∴ R is transitive.

R is an equivalence relation.

set of all lines related to line y = 2x + 4 is set of all lines that are parallel to the line y = 2x + 4.

Slope of line y = 2x + 4 is m = 2

line parallel to the given line is of the form y = 2x + c, where $c \in R$.

set of all lines related to the given line is given by y = 2x + c, where $c \in R$.

Question 15: Let R be the relation in the set {1, 2, 3, 4} given by

 $R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}$. Choose the correct answer.

(A) R is reflexive and symmetric but not transitive.

(B) R is reflexive and transitive but not symmetric.

(C) R is symmetric and transitive but not reflexive.

(D) R is an equivalence relation

Solution: R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}

 $(a, a) \in R$, for every $a \in \{1, 2, 3, 4\}$.

∴ R is reflexive.

 $(1, 2) \in R$, but $(2, 1) \notin R$.

∴ R is not symmetric.

 $(a, b), (b, c) \in R \Rightarrow (a, c) \in R \text{ for all } a, b, c \in \{1, 2, 3, 4\}.$

∴ R is transitive.

R is reflexive and transitive but not symmetric.

The correct answer is B.

Question 16: Let R be the relation in the set N given by $R = \{(a, b): a = b - 2, b > 6\}$. Choose the correct answer. (A) $(2, 4) \in R$ (B) $(3, 8) \in R$ (C) $(6, 8) \in R$ (D) $(8, 7) \in R$

Solution: $R = \{(a, b): a = b - 2, b > 6\}$

Now,

b > 6, $(2, 4) \notin R$

 $3 \neq 8 - 2$,

 \therefore (3, 8) \notin R And, as 8 \neq 7 – 2

∴ (8, 7) ∉ R

consider (6, 8).

8 > 6 and, 6 = 8 - 2.

 \therefore (6, 8) \in R

The correct answer is C.