
Solutions for Class 9 Maths Chapter 8 Lines and Angles

Exercise 8.4

Question 1: In figure, AB, CD and $\angle 1$ and $\angle 2$ are in the ratio 3 : 2. Determine all angles from 1 to 8.

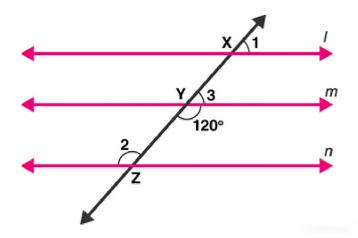
Let $\angle 1 = 3x$ and $\angle 2 = 2x$

From figure: $\angle 1$ and $\angle 2$ are linear pair of angles

Therefore, $\angle 1 + \angle 2 = 180$ 3x + 2x = 180 5x = 180 x = 180 / 5 => x = 36

So, $\angle 1 = 3x = 108^{\circ}$ and $\angle 2 = 2x = 72^{\circ}$

As we know, vertically opposite angles are equal.


Pairs of vertically opposite angles are: $(\angle 1 = \angle 3)$; $(\angle 2 = \angle 4)$; $(\angle 5, \angle 7)$ and $(\angle 6, \angle 8)$ $\angle 1 = \angle 3 = 108^{\circ}$ $\angle 2 = \angle 4 = 72^{\circ}$ $\angle 5 = \angle 7$ $\angle 6 = \angle 8$ We also know, if a transversal intersects any parallel lines, then the corresponding angles are equal

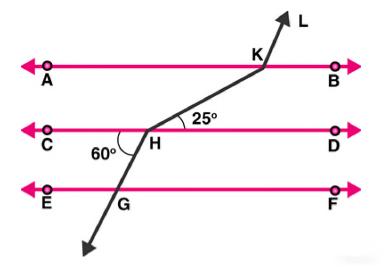
∠1 = ∠5 = ∠7 = 108°

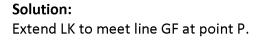
 $\angle 2 = \angle 6 = \angle 8 = 72^{\circ}$

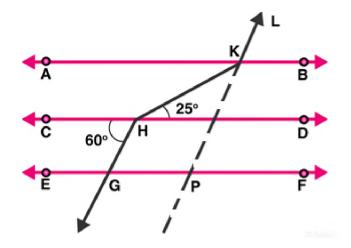
Answer: $\angle 1 = 108^{\circ}$, $\angle 2 = 72^{\circ}$, $\angle 3 = 108^{\circ}$, $\angle 4 = 72^{\circ}$, $\angle 5 = 108^{\circ}$, $\angle 6 = 72^{\circ}$, $\angle 7 = 108^{\circ}$ and $\angle 8 = 72^{\circ}$

Question 2: In figure, I, m and n are parallel lines intersected by transversal p at X, Y and Z respectively. Find $\angle 1$, $\angle 2$ and $\angle 3$.

Solution: From figure: $\angle Y = 120^{\circ}$ [Vertical opposite angles] $\angle 3 + \angle Y = 180^{\circ}$ [Linear pair angles theorem] $\Rightarrow \angle 3 = 180 - 120$ $\Rightarrow \angle 3 = 60^{\circ}$


Line I is parallel to line m, $\angle 1 = \angle 3$ [Corresponding angles] $\angle 1 = 60^{\circ}$


Also, line m is parallel to line n, $\angle 2 = \angle Y$ [Alternate interior angles are equal] $\angle 2 = 120^{\circ}$


Answer: $\angle 1 = 60^{\circ}$, $\angle 2 = 120^{\circ}$ and $\angle 3 = 60^{\circ}$.

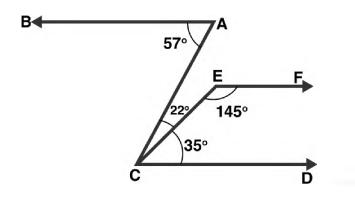
Question 3: In figure, AB || CD || EF and GH || KL. Find ∠HKL.

Solutions for Class 9 Maths Chapter 8 Lines and Angles

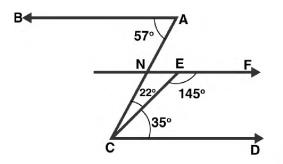
From figure, CD || GF, so, alternate angles are equal.

 \angle CHG = \angle HGP = 60°

 \angle HGP = \angle KPF = 60° [Corresponding angles of parallel lines are equal]


Hence, ∠KPG =180 - 60 = 120°

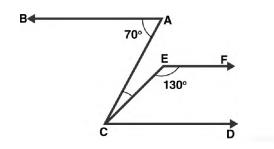
 $\Rightarrow \angle GPK = \angle AKL = 120^{\circ}$ [Corresponding angles of parallel lines are equal]


 $\angle AKH = \angle KHD = 25^{\circ}$ [alternate angles of parallel lines]

Therefore, \angle HKL = \angle AKH + \angle AKL = 25 + 120 = 145°

Question 4: In figure, show that AB || EF.

Solution: Produce EF to intersect AC at point N.


From figure, $\angle BAC = 57^{\circ}$ and $\angle ACD = 22^{\circ}+35^{\circ} = 57^{\circ}$

Alternative angles of parallel lines are equal => BA || EF(1)

Sum of Co-interior angles of parallel lines is 180° EF || CD \angle DCE + \angle CEF = 35 + 145 = 180° ...(2) From (1) and (2) AB || EF [Since, Lines parallel to the same line are parallel to each other]

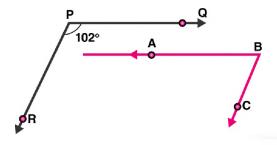
Hence Proved.

Question 5 : In figure, if AB || CD and CD || EF, find ∠ACE.

Solution: Given: CD || EF

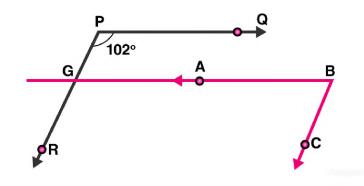
 \angle FEC + \angle ECD = 180° [Sum of co-interior angles is supplementary to each other]

=>∠ECD = 180° - 130° = 50°


Also, BA || CD

 $=> \angle BAC = \angle ACD = 70^{\circ}$ [Alternative angles of parallel lines are equal]

But, ∠ACE + ∠ECD =70°


=> ∠ACE = 70° — 50° = 20°

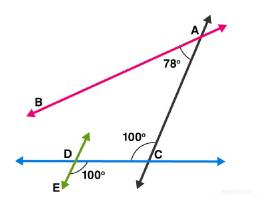
Question 6: In figure, PQ || AB and PR || BC. If \angle QPR = 102°, determine \angle ABC. Give reasons.

Solution: Extend line AB to meet line PR at point G.

Solutions for Class 9 Maths Chapter 8 Lines and Angles

Given: PQ || AB,

 \angle QPR = \angle BGR =102° [Corresponding angles of parallel lines are equal]


And PR || BC, ∠RGB+ ∠CBG =180° [Corresponding angles are supplementary]

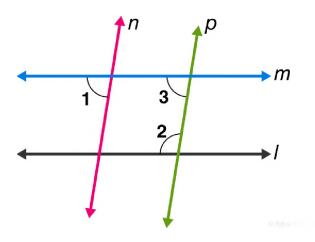
∠CBG = 180° - 102° = 78°

Since, \angle CBG = \angle ABC

=>∠ABC = 78°

Question 7 : In figure, state which lines are parallel and why?

Solution:


We know, If a transversal intersects two lines such that a pair of alternate interior angles are equal, then the two lines are parallel

From figure: => \angle EDC = \angle DCA = 100°

Lines DE and AC are intersected by a transversal DC such that the pair of alternate angles are equal.

So, DE || AC

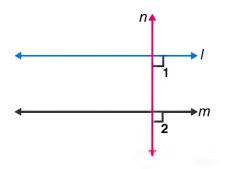
Question 8: In figure, if I||m, n || p and $\angle 1 = 85^{\circ}$, find $\angle 2$.

Solution:

Given: ∠1 = 85°

As we know, when a line cuts the parallel lines, the pair of alternate interior angles are equal.

=>∠1 = ∠3 = 85°


Again, co-interior angles are supplementary, so $\angle 2 + \angle 3 = 180^{\circ}$ $\angle 2 + 55^{\circ} = 180^{\circ}$ $\angle 2 = 180^{\circ} - 85^{\circ}$ $\angle 2 = 95^{\circ}$

Question 9 : If two straight lines are perpendicular to the same line, prove that they are parallel to each other.

Solution:

Let lines I and m are perpendicular to n, then

∠1= ∠2=90°

Since, lines I and m cut by a transversal line n and the corresponding angles are equal, which shows that, line I is parallel to line m.

Question 10: Prove that if the two arms of an angle are perpendicular to the two arms of another angle, then the angles are either equal or supplementary.

Solution: Let the angles be $\angle ACB$ and $\angle ABD$

Let AC perpendicular to AB, and CD is perpendicular to BD.

To Prove : $\angle ACD = \angle ABD \text{ OR } \angle ACD + \angle ABD = 180^{\circ}$

```
Proof :
In a quadrilateral,
\angle A + \angle C + \angle D + \angle B = 360^{\circ}
[ Sum of angles of quadrilateral is 360° ]
```

=> 180° + ∠C + ∠B = 360°

=>∠C + ∠B = 360° −180°

Therefore, $\angle ACD + \angle ABD = 180^{\circ}$ And $\angle ABD = \angle ACD = 90^{\circ}$

Hence, angles are equal as well as supplementary.