Solutions for Class 9 Maths Chapter 17 Construction

Exercise 17.2

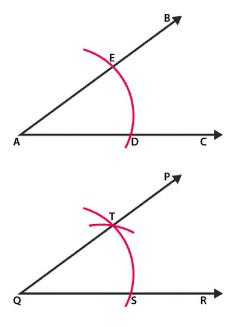
Question 1: Draw an angle and label it as \angle BAC. Construct another angle, equal to \angle BAC.

Solution:

Steps of construction:

Step 1: Draw any angle ABC.

Now will construct an angle equal to ∠BAC


Step 2: Draw a line segment QR.

Step 3: Draw an arc which intersects ∠BAC at E and D using A as center and choose any radius.

Step 4: With same measurements (set in step 2), Draw an arc from point Q.

Step 5: With S as center and radius equal to DE, draw an arc which intersects the previous arc at T.

Step 6: Join Q and T.

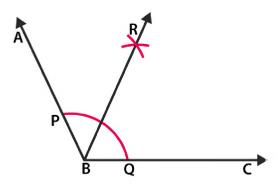
Therefore ∠PQR= ∠BAC

Question 2: Draw an obtuse angle. Bisect it. Measure each of the angles so formed.

Solution:

Steps of construction:

Step 1: Draw an obtuse angle. We choose $\angle ABC = 120^{\circ}$.


Step 2: Draw an arc which intersects AB at P and BC at Q, from center B and choose any radius.

Step 3: Draw an arc from point P by setting radius more than half of PQ.

Step 4: Repeat step 3 using Q as center and cut the previous arc at R.

Solutions for Class 9 Maths Chapter 17 Construction

Step 5: Join BR.

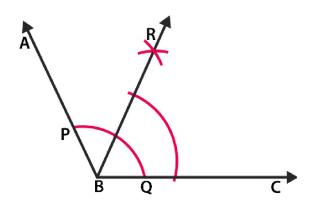
Therefore $\angle ABR = \angle RBC = 60^{\circ}$

Question 3: Using your protractor, draw an angle of 108° . With this given angle as given, draw an angle of 54° .

Solution:

Steps of construction:

Step 1: Draw $\angle ABC = 108^{\circ}$.


Step 2: Draw an arc which intersects AB at P and BC at Q from point B. (Choose any radius)

Step 3: Draw an arc from point P by setting radius more than half of PQ.

Step 4: Repeat Step 3 using Q as the centre and intersect the previous arc at R.

Step 5: Join BR.

Therefore $\angle RBC = 54^{\circ}$

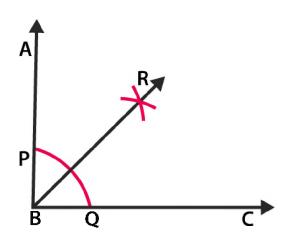
Solutions for Class 9 Maths Chapter 17 Construction

Question 4: Using the protractor, draw a right angle. Bisect it to get an angle of measure 45°.

Solution:

Steps of construction:

Step 1: Draw $\angle ABC = 90^{\circ}$.


Step 2: Draw an arc which intersects AB at P and BC at Q from point B. (Choose any radius)

Step 3: Draw an arc from point P by setting radius more than half of PQ.

Step 4: Repeat step 3 using Q as a centre and intersect the previous arc at R.

Step 5: Join RB.

Therefore $\angle RBC = 45^{\circ}$

