
Solutions for Class 9 Maths Chapter 10 Congruent Triangles

Exercise 10.2

Question 1: In figure, it is given that RT = TS, $\angle 1 = 2 \angle 2$ and $\angle 4 = 2(\angle 3)$. Prove that $\triangle RBT \cong \triangle SAT$.

Solution:

In the figure,

RT = TS	(i)

∠ 1 = 2 ∠ 2(ii)

And ∠ 4 = 2 ∠ 3(iii)

To prove: $\triangle RBT \cong \triangle SAT$

Let the point of intersection RB and SA be denoted by O

 $\angle AOR = \angle BOS$ [Vertically opposite angles]

or $\angle 1 = \angle 4$

 $2 \angle 2 = 2 \angle 3$ [From (ii) and (iii)]

or $\angle 2 = \angle 3$ (iv)

Now in Δ TRS, we have RT = TS

Solutions for Class 9 Maths Chapter 10 Congruent

Triangles

 $\Rightarrow \Delta$ TRS is an isosceles triangle

 \angle TRS = \angle TSR(v) But, \angle TRS = \angle TRB + \angle 2(vi)

 $\angle TSR = \angle TSA + \angle 3 \dots (vii)$

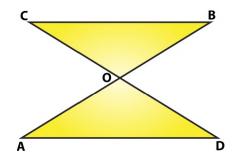
Putting (vi) and (vii) in (v) we get

 \angle TRB + \angle 2 = \angle TSA + \angle B

 $\Rightarrow \angle TRB = \angle TSA$ [From (iv)]

Consider Δ RBT and Δ SAT

RT = ST [From (i)]


 \angle TRB = \angle TSA [From (iv)]

By ASA criterion of congruence, we have

 $\Delta \text{ RBT} \cong \Delta \text{ SAT}$

Question 2: Two lines AB and CD intersect at O such that BC is equal and parallel to AD. Prove that the lines AB and CD bisect at O.

Solution: Lines AB and CD Intersect at O

Such that BC || AD and

BC = AD(i)

Solutions for Class 9 Maths Chapter 10 Congruent

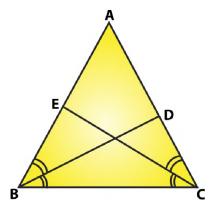
Triangles

To prove : AB and CD bisect at O.

First we have to prove that $\Delta \text{ AOD} \cong \Delta \text{ BOC}$

 $\angle OCB = \angle ODA$ [AD||BC and CD is transversal] AD = BC [from (i)] $\angle OBC = \angle OAD$ [AD||BC and AB is transversal] By ASA Criterion: $\triangle AOD \cong \triangle BOC$

OA = OB and OD = OC (By c.p.c.t.)


Therefore, AB and CD bisect each other at O.

Hence Proved.

Question 3: BD and CE are bisectors of \angle B and \angle C of an isosceles \triangle ABC with AB = AC. Prove that BD = CE.

Solution:

 Δ ABC is isosceles with AB = AC and BD and CE are bisectors of \angle B and \angle C We have to prove BD = CE. (Given)

Since AB = AC

 $\Rightarrow \angle ABC = \angle ACB$ (i) [Angles opposite to equal sides are equal]

Since BD and CE are bisectors of \angle B and \angle C

 \angle ABD = \angle DBC = \angle BCE = ECA = \angle B/2 = \angle C/2 ...(ii)

Solutions for Class 9 Maths Chapter 10 Congruent

Triangles

Now, Consider \triangle EBC = \triangle DCB

 \angle EBC = \angle DCB [From (i)]

BC = BC [Common side]

 \angle BCE = \angle CBD [From (ii)]

By ASA congruence criterion, Δ EBC $\cong \Delta$ DCB

Since corresponding parts of congruent triangles are equal.

=> CE = BD

or, BD = CE

Hence proved.