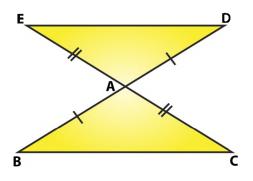
Triangles

Exercise 10.1

Question 1: In figure, the sides BA and CA have been produced such that BA = AD and CA = AE. Prove that segment DE || BC.



Solution:

Sides BA and CA have been produced such that BA = AD and CA = AE.

To prove: DE || BC

Consider \triangle BAC and \triangle DAE,

BA = AD and CA= AE (Given)

 $\angle BAC = \angle DAE$ (vertically opposite angles)

By SAS congruence criterion, we have

 $\bigtriangleup \mathsf{BAC} \simeq \bigtriangleup \mathsf{DAE}$

We know, corresponding parts of congruent triangles are equal

So, BC = DE and \angle DEA = \angle BCA, \angle EDA = \angle CBA

Now, DE and BC are two lines intersected by a transversal DB s.t. $\angle DEA = \angle BCA$ (alternate angles are equal)

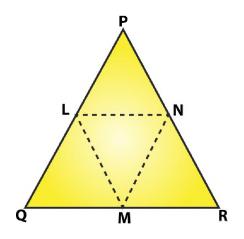
Therefore, DE || BC. Proved.

Triangles

Question 2: In a PQR, if PQ = QR and L, M and N are the mid-points of the sides PQ, QR and RP respectively. Prove that LN = MN.

Solution:

Draw a figure based on given instruction,



In \triangle PQR, PQ = QR and L, M, N are midpoints of the sides PQ, QP and RP respectively (Given)

To prove : LN = MN

As two sides of the triangle are equal, so \triangle PQR is an isosceles triangle

 $PQ = QR and \angle QPR = \angle QRP$ (i)

Also, L and M are midpoints of PQ and QR respectively

PL = LQ = QM = MR = QR/2

Now, consider Δ LPN and Δ MRN,

LP = MR

 \angle LPN = \angle MRN [From (i)]

 \angle QPR = \angle LPN and \angle QRP = \angle MRN

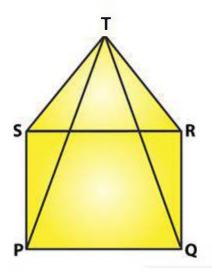
PN = NR [N is midpoint of PR]

By SAS congruence criterion, Δ LPN $\simeq \Delta$ MRN

We know, corresponding parts of congruent triangles are equal.

So LN = MN Proved.

Question 3: In figure, PQRS is a square and SRT is an equilateral triangle. Prove that (i) PT = QT (ii) $\angle TQR = 15^{\circ}$



Solution: Given: PQRS is a square and SRT is an equilateral triangle.

To prove:

(i) PT =QT and (ii) \angle TQR =15°

Now,

PQRS is a square: PQ = QR = RS = SP (i) $And \angle SPQ = \angle PQR = \angle QRS = \angle RSP = 90^{\circ}$

Also, \triangle SRT is an equilateral triangle: SR = RT = TS(ii) And \angle TSR = \angle SRT = \angle RTS = 60°

From (i) and (ii)

PQ = QR = SP = SR = RT = TS(iii)

Triangles

From figure,

 $\angle TSP = \angle TSR + \angle RSP = 60^{\circ} + 90^{\circ} = 150^{\circ}$ and

 \angle TRQ = \angle TRS + \angle SRQ = 60° + 90° = 150°

 $= \ge \angle TSR = \angle TRQ = 150^{\circ}$ (iv)

By SAS congruence criterion, Δ TSP $\simeq \Delta$ TRQ

We know, corresponding parts of congruent triangles are equal So, PT = QT

Proved part (i).

Now, consider Δ TQR.

QR = TR [From (iii)]

 Δ TQR is an isosceles triangle.

 \angle QTR = \angle TQR [angles opposite to equal sides]

Sum of angles in a triangle = 180°

 $\Rightarrow \angle QTR + \angle TQR + \angle TRQ = 180^{\circ}$

=> 2 ∠ TQR + 150° = 180° [From (iv)]

=> 2 ∠ TQR = 30°

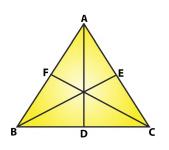
 $= \ge \angle TQR = 15^{\circ}$

Hence proved part (ii).

Question 4: Prove that the medians of an equilateral triangle are equal.

Solution:

Consider an equilateral \triangle ABC, and Let D, E, F are midpoints of BC, CA and AB.



Here, AD, BE and CF are medians of \triangle ABC.

Now,

D is midpoint of BC => BD = DC

Similarly, CE = EA and AF = FB

Since $\triangle ABC$ is an equilateral triangle

AB = BC = CA(i)

BD = DC = CE = EA = AF = FB(ii)

And also, $\angle ABC = \angle BCA = \angle CAB = 60^{\circ}$ (iii)

Consider Δ ABD and Δ BCE

[From (i)]

BD = CE [From (ii)]

 $\angle ABD = \angle BCE$ [From (iii)]

By SAS congruence criterion,

 $\Delta \text{ ABD} \simeq \Delta \text{ BCE}$

=> AD = BE(iv)

[Corresponding parts of congruent triangles are equal in measure]

Triangles

Now, consider Δ BCE and Δ CAF,

BC = CA [From (i)]

 \angle BCE = \angle CAF [From (ii)]

CE = AF [From (ii)]

By SAS congruence criterion,

 Δ BCE $\simeq \Delta$ CAF

=> BE = CF(v) [Corresponding parts of congruent triangles are equal]

From (iv) and (v), we have

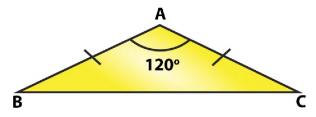
AD = BE = CF

Median AD = Median BE = Median CF

The medians of an equilateral triangle are equal.

Hence proved

Question 5: In a \triangle ABC, if $\angle A = 120^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$. Solution:



To find: \angle B and \angle C.

Here, \triangle ABC is an isosceles triangle since AB = AC

 $\angle B = \angle C$ (i) [Angles opposite to equal sides are equal]

We know, sum of angles in a triangle = 180°

Triangles

 $\angle A + \angle B + \angle C = 180^{\circ}$

 $\angle A + \angle B + \angle B$ = 180° (using (i)

 $120^{0} + 2 \angle B = 180^{0}$

 $2 \angle B = 180^{\circ} - 120^{\circ} = 60^{\circ}$

∠ B = 30°

Therefore, $\angle B = \angle C = 30^{\circ}$

Question 6: In a \triangle ABC, if AB = AC and \angle B = 70°, find \angle A.

Solution:

Given: In a \triangle ABC, AB = AC and \angle B = 70°

 \angle B = \angle C [Angles opposite to equal sides are equal]

Therefore, $\angle B = \angle C = 70^{\circ}$

Sum of angles in a triangle = 180°

 $\angle A + \angle B + \angle C = 180^{\circ}$

 $\angle A + 70^{\circ} + 70^{\circ} = 180^{\circ}$

 $\angle A = 180^{\circ} - 140^{\circ}$

 $\angle A = 40^{\circ}$