Ratio and Proportion Exercise 8B

Q1

Answer:

We have:

Product of the extremes = $30 \times 60 = 1800$ Product of the means = $40 \times 45 = 1800$ Product of extremes = Product of means

Hence, 30: 40:: 45: 60

Q2

Answer:

We have:

Product of the extremes = $36 \times 7 = 252$ Product of the means = $49 \times 6 = 294$ Product of the extremes ≠ Product of the means

Hence, 36, 49, 6 and 7 are not in proportion.

Q3

Answer:

Product of the extremes = $2 \times 27 = 54$ Product of the means = $9 \times x = 9x$

Since 2:9::x.27, we have:

Product of the extremes = Product of the means

 \Rightarrow 54 = 9x

 $\Rightarrow x = 6$

Q4

ct of the means

```
Answer:
Product of the extremes = 8 \times 35 = 280
 Product of the means = 16 \times x = 16x
Since 8: x:: 16: 35, we have:
Product of the extremes = Product of the means
\Rightarrow 280 = 16x
 \Rightarrow x = 17.5
O5
 Answer:
 Product of the extremes = x \times 60 = 60x
 Product of the means = 35 \times 48 = 1680
 Since x: 35 :: 48 : 60, we have:
 Product of the extremes = Product of the means
 \Rightarrow 60x= 1680
 \Rightarrow x = 28
Q6
 Answer:
 (i) Let the fourth proportional be x.
 Then, 8:36:6:x
                                               [Product of extremes = Product of means]
 8 \times x = 36 \times 6
 \Rightarrow 8x = 216
 \Rightarrow x = 27
 Hence, the fourth proportional is 27.
 (ii) Let the fourth proportional be x.
 Then, 5:7::30:x
                                                    [Product of extremes = Product of means]
 \Rightarrow 5 \times x = 7 \times 30
 \Rightarrow 8x = 216
 \Rightarrow 5x = 210
 \Rightarrow x = 42
 Hence, the fourth proportional is 42,
(iii) Let the fourth proportional be x.
 Then, 2.8 	imes x = 14 	imes 3.5
                                                       [Product of extremes = Product of means]
 \Rightarrow 8x = 216
 \Rightarrow 2.8x = 49
 \Rightarrow x = 17.5
Hence, the fourth proportional is 17.5.
Q7
Answer:
```

36, 54 and x are in continued proportion.

Then, 36:54::54:x $\Rightarrow 36\,\times\,x\,=54\,\times\,54$

[Product of extremes = Product of means]

 $\Rightarrow 36x = 2916$ $\Rightarrow x = 81$

Q8

```
Answer:
```

27, 36 and x are in continued proportion.

$$\Rightarrow$$
 27×x = 36 ×36 [Product of extremes = Product of means]

$$\Rightarrow 27x = 1296$$

$$\Rightarrow x = 48$$

Hence, the value of x is 48.

Q9

Answer:

(i) Suppose that x is the third proportional to 8 and 12.

Then, 8 :12 :: 12 : x
$$\Rightarrow 8 \times x = 12 \times 12$$
 (Product of extremes = Product of means)
$$\Rightarrow 8x = 144$$

- 0x - 144

 $\Rightarrow x = 18$

Hence, the required third proportional is 18.

(ii) Suppose that x is the third proportional to 12 and 18.

Then, 12 : 18 :: 18 :
$$x$$
 \Rightarrow 12 \times x = 18 \times 18 (Product of extremes = Product of means) \Rightarrow 12 x = 324 \Rightarrow x = 27

Hence, the third proportional is 27.

(iii) Suppose that x is the third proportional to 4.5 and 6.

Then,
$$4.5:6::6:x$$

 $\Rightarrow 4.5 \times x = 6 \times 6$ (Product of extremes = Product of means
 $\Rightarrow 4.5x = 36$
 $\Rightarrow x = 8$

Hence, the third proportional is 8.

Q10

Answer:

The third proportional to 7 and x is 28.

Then, 7:
$$x$$
:: x : 28
 \Rightarrow 7 × 28 = x ² (Product of extremes = Product of means)
 \Rightarrow x = 14

Q11

Answer:

(i) Suppose that x is the mean proportional.

$$\Rightarrow$$
 6 $imes$ 24 $=$ x $imes$ x (Product of extremes = Product of means) \Rightarrow x = 12

Hence, the mean proportional to 6 and 24 is 12.

(ii) Suppose that x is the mean proportional.

Then, 3 :
$$x$$
 :: x : 27
$$\Rightarrow 3 \times 27 = x \times x$$
 (Product of extremes =Product of means)
$$\Rightarrow x^2 = 81$$

$$\Rightarrow x = 9$$

Hence, the mean proportional to 3 and 27 is 9.

Then, 0.4: x:: x: 0.9

$$\Rightarrow$$
 $0.4 \times 0.9 = x \times x$ (Product of extremes =Product of means) \Rightarrow $x^2 = 0.36$ \Rightarrow x = 0.6

Hence, the mean proportional to 0.4 and 0.9 is 0.6.

Q12

Answer:

Suppose that the number is x.

Then, (5 + x): (9 + x):: (7 + x): (12 + x)

$$\Rightarrow$$
 (5 + x) \times (12 + x) = (9 + x) \times (7 + x)

(Product of extremes = Product of means)

$$\begin{array}{l} \Rightarrow 60 + 5 \ x + 12 \ x + x^2 = 63 + 9 x + 7 x + x^2 \\ \Rightarrow 60 + 17 x = 63 + 16 x \\ \Rightarrow x = 3 \end{array}$$

Hence, 3 must be added to each of the numbers: 5, 9, 7 and 12, to get the numbers which are in proportion.

Q13

Answer:

Suppose that x is the number that is to be subtracted.

Then,
$$(10 - x)$$
: $(12 - x)$:: $(19 - x)$: $(24 - x)$

$$\Rightarrow (10-x) \times (24-x) = (12-x) \times (19-x)$$

(Product of extremes = Product of means)

$$\begin{array}{l} \Rightarrow 240 \, - \, 10x \, - 24x \, + \, x^2 \, = \, 228 \, - \, 12x \, - 19x \, + \, x \\ \Rightarrow 240 \, - \, 34x \, = \, 228 \, - \, 31x \end{array}$$

$$\Rightarrow 3x = 12$$

$$\Rightarrow x = 4$$

Hence, 4 must be subtracted from each of the numbers: 10, 12, 19 and 24, to get the numbers which are in proportion.

Q14

Answer:

Distance represented by 1 cm on the map = 5000000 cm = 50 km

Distance represented by 3 cm on the map = 50×4 km = 200 km

: The actual distance is 200 km.

Q15

Answer:

(Height of tree): (height of its shadow) = (height of the pole): (height of its shadow)

Suppose that the height of pole is x cm.

Then, 6:8=x:20

$$\Rightarrow x = \frac{6 \times 20}{8} = 15$$

∴ Height of the pole = 15 cm