<u>LINEAR EQUATIONS IN TWO VARIABLE - CHAPTER - 4</u>

EXERCISE - 4A

Answer.1.

(i) 3x + 5y = 7.5

We have,

$$\Rightarrow 3x + 5y - 7.5 = 0$$

$$\Rightarrow 6x + 10y - 15 = 0$$

Comparing this equation with ax + by + c = 0, we get

$$a = 6, b = 10$$
 and $c = -15$

(ii) $2x - \frac{y}{5} + 6 = 0$

We have,

$$2x - \frac{y}{5} + 6 = 0$$

$$\Rightarrow 10x - y + 30 = 0$$

Comparing this equation with ax + by + c = 0, we get

$$a = 10, b = -1$$
 and $c = 30$

(iii) 3y - 2x = 6

We have,

$$3y - 2x = 6$$

$$\Rightarrow$$
 -2x + 3y - 6 = 0

Comparing this equation with ax + by + c = 0, we get

$$a = -2, b = 3 \text{ and } c = -6$$

(iv) 4x = 5y

We have,

$$4x = 5y$$

$$\Rightarrow 4x - 5y = 0$$

Comparing this equation with ax + by + c = 0, we get

$$a = 4, b = -5$$
 and $c = 0$

 $(v) \quad \frac{x}{5} - \frac{y}{6} = 1$

We have,

$$\frac{x}{5} - \frac{y}{6} = 1$$

$$\Rightarrow (6x - 5y)/30 = 1$$

$$\Rightarrow 6x - 5y = 30$$

$$\Rightarrow 6x - 5y = 30$$
$$\Rightarrow 6x - 5y - 30 = 0$$

Comparing this equation with ax + by + c = 0, we get

$$a = 6, b = -5$$
 and $c = -30$

 $(vi) \sqrt{2}x + \sqrt{3}y = 5$

We have,

$$\sqrt{2}x + \sqrt{3}y = 5$$

$$\Rightarrow \sqrt{2}x + \sqrt{3}y - 5 = 0$$

Comparing this equation with ax + by + c = 0, we get

$$a = \sqrt{2}$$
, $b = \sqrt{3}$ and $c = -5$

Answer.2.

(i) x = 6

We have,

$$x = 6$$

$$\Rightarrow x - 6 = 0$$

$$\Rightarrow x - 0y - 6 = 0$$

Comparing this equation with ax + by + c = 0, we get a = 1, b = 0 and c = -6

(ii)
$$3x - y = x - 1$$

We have,

$$3x - y = x - 1$$

$$\Rightarrow 3x - x - y + 1 = 0$$

$$\Rightarrow 2x - y + 1 = 0$$

Comparing this equation with ax + by + c = 0, we get

$$a = 2, b = -1 \text{ and } c = 1$$

(iii)
$$2x + 9 = 0$$

We have,

$$2x + 9 = 0$$

$$\Rightarrow 2x + 0y + 9 = 0$$

Comparing this equation with ax + by + c = 0, we get

$$a = 2, b = 0$$
 and $c = 9$

$$(iv) 4y = 7$$

We have,

$$4y = 7$$

$$\Rightarrow 0x + 4y - 7 = 0$$

Comparing this equation with ax + by + c = 0, we get a = 0 b = 4 and c = 7

$$a = 0, b = 4 \text{ and } c = -7$$

$$(\mathbf{v}) x + y = 4$$

We have,

$$x + y = 4$$

$$\Rightarrow x + y - 4 = 0$$

Comparing this equation with ax + by + c = 0, we get

$$a = 1, b = 1 \text{ and } c = -4$$

(vi)
$$\frac{x}{2} - \frac{y}{3} = \frac{1}{6} + y$$

We have,

$$\frac{x}{2} - \frac{y}{3} = \frac{1}{6} + y$$

$$\Rightarrow \frac{x}{2} - \frac{y}{2} - y = 0$$

$$\Rightarrow \frac{3x - 2y - 6y}{6} = \frac{3x - 2y - 6y}{6}$$

$$\Rightarrow 3x - 8y = 1$$

$$\Rightarrow$$
 3x - 8y - 1 = 0

Comparing this equation with ax + by + c = 0, we get

$$a = 3, b = -8 \text{ and } c = -1$$

Answer.3.

Equation is
$$5x - 4y = 20$$

Substituting
$$x = 4$$
 and $y = 0$ in L.H.S. of equation,

L.H.S. =
$$5x - 4y$$

$$=5(4)-4(0)$$

$$= 20 - 0$$

= R.H.S.

Hence, (4, 0) is the solution of the equation

(ii) (0,5)

Equation is 5x - 4y = 20

Substituting x = 0 and y = 5 in L.H.S. of equation,

$$L.H.S. = 5x - 4y$$

$$=5(0)-4(5)$$

$$= 0 - 20$$

$$= -20$$

 \neq R.H.S.

Hence, (0, 5) is **NOT** the solution of the equation.

(iii) $\left(-2, \frac{5}{2}\right)$

Equation is 5x - 4y = 20

Substituting x = -2 and y = $\left(\frac{5}{2}\right)$ in L.H.S. of equation,

$$L.H.S. = 5x - 4y$$

$$=5(-2)-4\left(\frac{5}{2}\right)$$

$$= -20$$

Hence, $\left(-2, \frac{5}{2}\right)$ is **NOT** the solution of the equation.

(iv) (0, -5)

Equation is 5x - 4y = 20

Substituting x = 0 and y = -5 in L.H.S. of equation,

$$L.H.S. = 5x - 4y$$

$$=5(0)-4(-5)$$

$$= 0 + 20$$

$$= 20$$

$$= R.H.S.$$

Hence, (0, -5) is the solution of the equation.

 $(v)\left(2\ ,\ \frac{-5}{2}\right)$

Equation is 5x - 4y = 20

Substituting x = 2 and $y = \left(\frac{-5}{3}\right)$ in L.H.S. of equation,

$$L.H.S. = 5x - 4y$$

$$=5(2)-4\left(\frac{-5}{2}\right)$$

$$= 10 + 10$$

$$= 20$$

$$= R.H.S.$$

Hence, $\left(2, \frac{-5}{2}\right)$ is the solution of the equation.

Answer.4.

(i) Equation is 2x - 3y = 6

Substituting x = 0 in the equation,

$$2(0) - 3y = 6$$

$$\Rightarrow$$
 0 - 3 y = 6

$$\Rightarrow 3y = -6$$

$$\Rightarrow y = -2$$

So, (0, -2) is the solution of the equation.

Substituting y = 0 in the equation,

$$2x - 3(0) = 6$$

$$\Rightarrow 2x - 0 = 6$$

$$\Rightarrow 2x = 6$$

$$\Rightarrow x = 3$$

So, (3, 0) is the solution of the equation.

Substituting x = 6 in the equation,

$$2(6) - 3y = 6$$

$$\Rightarrow 12 - 3y = 6$$

$$\Rightarrow 3y = 6$$

$$\Rightarrow y = 2$$

So, (6, 2) is the solution of the equation.

Substituting y = 4 in the equation,

$$2x - 3(4) = 6$$

$$\Rightarrow 2x - 12 = 6$$

$$\Rightarrow 2x = 18$$

$$\Rightarrow x = 9$$

So, (9, 4) is the solution of the equation.

Substituting x = -3 in the equation,

$$2(-3) - 3y = 6$$

$$\Rightarrow$$
 $-6 - 3y = 6$

$$\Rightarrow$$
 3 $y = -12$

$$\Rightarrow y = -4$$

So, (-3, -4) is the solution of the equation.

(ii) Equation is
$$\frac{2x}{5} + \frac{3y}{10} = 3$$

$$\Rightarrow \frac{4x+3y}{10} = 3$$

$$\Rightarrow$$
 4 x + 3 y = 30

Substituting x = 0 in (i),

$$4(0) + 3y = 30$$

$$\Rightarrow 3y = 30$$

$$\Rightarrow y = 10$$

So, (0, 10) is the solution of the equation.

Substituting x = 3 in (i),

$$4(3) + 3y = 30$$

$$\Rightarrow$$
 12 + 3y = 30

$$\Rightarrow 3y = 18$$

$$\Rightarrow y = 6$$

So, (3, 6) is the solution of the equation.

Substituting x = -3 in (i),

$$4(-3) + 3y = 30$$

$$\Rightarrow$$
 $-12 + 3y = 30$

$$\Rightarrow$$
 3y = 42

$$\Rightarrow y = 14$$

So, (-3, 14) is the solution of the equation.

Substituting y = 2 in (i),

$$4x + 3(2) = 30$$

$$\Rightarrow 4x + 6 = 30$$

$$\Rightarrow 4x = 24$$

$$\Rightarrow x = 6$$

So, (6, 2) is the solution of the equation.

Substituting y = -2 in (i),

$$4x + 3(-2) = 30$$

$$\Rightarrow 4x - 6 = 30$$

$$\Rightarrow 4x = 36$$

$$\Rightarrow x = 9$$

So, (9, -2) is the solution of the equation.

```
(iii) Equation is 3y = 4x
   Substituting x = 3 in the equation,
   3y = 4(3)
   \Rightarrow 3y = 12
   \Rightarrow v = 4
   So, (3, 4) is the solution of the equation.
   Substituting x = -3 in the equation,
   3y = 4(-3)
   \Rightarrow 3y = -12
   \Rightarrow y = -4
   So, (-3, -4) is the solution of the equation.
   Substituting x = 9 in the equation,
   3y = 4(9)
   \Rightarrow 3y = 36
   \Rightarrow y = 12
   So, (9, 12) is the solution of the equation.
   Substituting y = 8 in the equation,
```

3(8) = 4x

 $\Rightarrow 4x = 24$

 $\Rightarrow x = 6$

So, (6,8) is the solution of the equation.

Substituting y = -8 in the equation,

3(-8) = 4x

 $\Rightarrow 4x = -24$

Answer.5. Given x = 3 and y = 4 is a solution of the equation 5x - 3y = k, Substituting x = 3 and y = 4 in equation 5x - 3y = k, we get 5(3) - 3(4) = k $\Rightarrow 15 - 12 = k$ $\Rightarrow 15 - 12 = k$ \Rightarrow k = 3

Answer.6. Given x = 3k + 2 and y = 2k - 1 is a solution of the equation 4x - 3y + 1 = 0, Substituting these values in equation, we get 4(3k + 2) - 3(2k - 1) + 1 = 0 $\Rightarrow 12k + 8 - 6k + 3 + 1 = 0$ \Rightarrow 6k + 12 = 0 \Rightarrow 6k = -12 \Rightarrow k = -2

Answer.7. Let the cost of a pencil and cost of ballpoint to be $\not\in x$ and $\not\in y$ respectively. So,

Cost of 2 ballpoints = $\mathbf{\xi}$ 2y According to question,

5x = 2y

 $\Rightarrow 5x - 2y = 0$

 \therefore Required Equation, 5x - 2y = 0

EXERCISE – 4B

Answer.1.

(ii) x + 4 = 0

(iii) y = 3

(iv)
$$y = -3$$

(v) x = -2

(vi) x = 5

(viii) y = 4

Answer.2. Given equation: y = 3x.

Putting
$$x = -2$$
, $y = 3 \times -2 = -6$

Putting
$$x = -1, y = 3 \times -1 = -3$$

Thus, we have the following table:

x	-2	-1
y	-6	-3

Now plot the points (-2, -6), (-1, -3) on a graph paper. Join the points and extend the line in both the directions.

- (i) From the graph we can see that when x = 2, y = 6
- (ii) Also, from the graph we can see that when x = -2, y = -6

Answer.3. Given equation: x + 2y - 3 = 0

or,
$$x + 2y = 3$$

When
$$y = 0$$
, $x + 0 = 3 \Rightarrow x = 3$

When
$$y = 1, x + 2 = 3 \Rightarrow x = 3 - 2 = 1$$

When
$$y = 2, x + 4 = 3 \Rightarrow x = 3 - 4 = -1$$

Thus, we have the following table:

х	3	1	-1
у	0	1	2

- (i) From the graph we can see that when x = 5, y = -1
- (ii) Also, from the graph we can see that when x = -5, y = 4

Answer.4. Given equation: 2x - 3y = 5

$$\Rightarrow 2x = 3y + 5$$

$$\Rightarrow x = \frac{(3y+5)}{2}$$

When,
$$y = -1$$
, $x = \frac{(-3+5)}{2} = \frac{2}{2} = 1$

$$\Rightarrow x = \frac{(3y+5)}{2}$$
When, $y = -1$, $x = \frac{(-3+5)}{2} = \frac{2}{2} = 1$
When, $y = -3$, $x = \frac{(-9+5)}{2} = -\frac{4}{2} = -2$
Thus, we have the following table:

Tiras, we make	Tomo wing thorow	
x	1	-2
y	-1	-3

Plot the points (-2, -3), (1,-1)(-2, -3), (1,-1) on the graph paper and extend the line in both directions.

- (i) From the graph we can see that when x = 4, y = 1
- (ii) Also, from the graph we can see that when y = 3, x = 7

Answer.5. Given equation: 2x + y = 6

$$\Rightarrow y = 6 - 2x$$

When, x = 0, y = 6 - 0 = 6

When,
$$x = 1$$
, $y = 6 - 2 = 4$

When,
$$x = 2$$
, $y = 6 - 4 = 2$

Thus, we have the following table:

x	0	1	2
у	6	4	2

Plot the points (0,6), (1,4) and (2,2) on the graph paper. Join these points and extend the line.

Clearly, the graph cuts the x –axis at P(3,0).

Answer.6. Given equation: 3x + 2y = 6

$$2y = 6 - 3x \Rightarrow y = \frac{(6 - 3x)}{3}$$

When
$$x = 2$$
, $y = \frac{(6-6)}{2} = 0$

When
$$x = 4$$
, $y = \frac{\binom{2}{6-12}}{2} = -3$

Thus, we get the following table:

	* 2	
x	2	4
y	0	-3

Plot the points (2,0), (4,-3) on the graph paper. Join the points and extend the graph in both the

directions.

Clearly, the graph cuts the y –axis at P(0,3).

Answer.7.
$$3x - 2y = 4$$

 $\Rightarrow 2y = 3x - 4$
 $\Rightarrow y = \frac{3x - 4}{2}$
When $x = 0$, $y = \frac{3 \times 0 - 4}{2} = \frac{0 - 4}{2} = -\frac{4}{2} = -2$
When $x = 2$, $y = \frac{3 \times 2 - 4}{2} = \frac{6 - 4}{2} = \frac{2}{2} = 1$
When $x = -2$, $y = \frac{3 \times (-2) - 4}{2} = \frac{-6 - 4}{2} = -\frac{10}{2} = -5$

Thus, the points on the line 3x - 2y = 4 are as given in the following table:

х	0	2	-2
у	-2	1	-5

Plotting the points (0, -2), (2, 1) and (-2, -5) and drawing a line passing through these points, we obtain the graph of the line 3x - 2y = 4.

$$x + y - 3 = 0$$

 $\Rightarrow y = -x + 3$
When $x = 0$, $y = -0 + 3 = 3$
When $x = 1$, $y = -1 + 3 = 2$
When $x = -1$, $y = -(-1) + 3 = 1 + 3 = 4$

Thus, the points on the line x + y - 3 = 0 are as given in the following table:

х	0	1	-1
У	3	2	4

Plotting the points (0, 3), (1, 2) and (-1, 4) and drawing a line passing through these points, we obtain the graph of the line x + y - 3 = 0.

It can be seen that the lines 3x - 2y = 4 and x + y - 3 = 0 intersect at the point (2, 1).

Answer.8.
$$4x + 3y = 24$$

 $\Rightarrow 3y = -4x + 24$
 $\Rightarrow y = \frac{(-4x + 24)}{3}$

When
$$x = 0$$
, $y = \frac{-4 \times 0 + 24}{3} = \frac{0 + 24}{3} = \frac{24}{3} = 8$
When $x = 3$, $y = \frac{-4 \times 3 + 24}{3} = \frac{-12 + 24}{3} = \frac{12}{3} = 4$
When $x = 6$, $y = \frac{-4 \times 6 + 24}{3} = \frac{-24 + 24}{3} = 0$

When
$$x = 6$$
, $y = \frac{-4 \times 6 + 24}{3} = \frac{-24 + 24}{3} = 0$

Thus, the points on the line 4x + 3y = 24 are as given in the following table:

X	0	3	6
Y	8	4	0

Plotting the points (0, 8), (3, 4) and (6, 0) and drawing a line passing through these points, we obtain the graph of the line 4x + 3y = 24.

- (i) It can be seen that the line 4x + 3y = 24 intersects the x-axis at (6, 0) and y-axis at (0, 8).
- (ii) The triangle formed by the line and the coordinate axes is a right triangle right angled at the origin.

∴ Area of the triangle =
$$\frac{1}{2} \times 6 \times 8$$

= 24 sq units

Answer.9.
$$2x + y = 6$$

$$\Rightarrow y = -2x + 6$$

When
$$x = 0$$
, $y = -2 \times 0 + 6 = 0 + 6 = 6$

When
$$x = 1$$
, $y = -2 \times 1 + 6 = -2 + 6 = 4$

When
$$x = 2$$
, $y = -2 \times 2 + 6 = -4 + 6 = 2$

Thus, the points on the line 2x + y = 6 are as given in the following table:

х	0	1	2
у	6	4	2

Plotting the points (0, 6), (1, 4) and (2, 2) and drawing a line passing through these points, we obtain the graph of the line 2x + y = 6.

$$2x - y + 2 = 0$$

$$\Rightarrow$$
 $y = 2x + 2$
When $x = 0$, $y = 2 \times 0 + 2 = 0 + 2 = 2$
When $x = 1$, $y = 2 \times 1 + 2 = 2 + 2 = 4$
When $x = -1$, $y = 2 \times (-1) + 2 = -2 + 2 = 0$

Thus, the points on the line 2x - y + 2 = 0 are as given in the following table:

х	0	1	-1
у	2	4	0

Plotting the points (0, 2), (1, 4) and (-1, 0) and drawing a line passing through these points, we obtain the graph of the line 2x - y + 2 = 0.

The shaded region represents the area bounded by the lines 2x + y = 6, 2x - y + 2 = 0 and the x-axis. This represents a triangle.

It can be seen that the lines intersect at the point C(1,4). Draw CD perpendicular from C on the x-axis.

Height =
$$CD = 4$$
 units

Base =
$$AB = 4$$
 units

∴ Area of the shaded region = Area of
$$\triangle ABC$$

= $\frac{1}{2} \times AB \times CD$
= $\frac{1}{2} \times 4 \times 4$
= 8 sq units

Answer.10.
$$x - y = 1$$

$$\Rightarrow$$
 $y = x - 1$

When
$$x = 0$$
, $y = 0 - 1 = -1$

When
$$x = 1$$
, $y = 1 - 1 = 0$

When
$$x = 2$$
, $y = 2 - 1 = 1$

Thus, the points on the line x - y = 1 are as given in the following table:

X	0	1	2
Y	-1	0	1

Plotting the points (0, -1), (1, 0) and (2, 1) and drawing a line passing through these points, we obtain the graph of the line x - y = 1.

$$2x + y = 8$$

$$\Rightarrow$$
 $y = -2x + 8$

When
$$x = 1$$
, $y = -2 \times 1 + 8 = -2 + 8 = 6$

When
$$x = 2$$
, $y = -2 \times 2 + 8 = -4 + 8 = 4$

When
$$x = 3$$
, $y = -2 \times 3 + 8 = -6 + 8 = 2$

Thus, the points on the line 2x + y = 8 are as given in the following table:

X	1	2	3
Y	6	4	2

Plotting the points (1, 6), (2, 4) and (3, 2) and drawing a line passing through these points, we obtain the graph of the line 2x + y = 8.

The shaded region represents the area bounded by the lines x - y = 1, 2x + y = 8 and the y-axis. This represents a triangle.

It can be seen that the lines intersect at the point C(3,2). Draw CD perpendicular from C on the y-axis. Height = CD = 3 units

Base =
$$AB = 9$$
 units

∴ Area of the shaded region = Area of
$$\triangle$$
ABC

$$= \frac{1}{2} \times AB \times CD$$

$$= \frac{1}{2} \times 9 \times 3$$

$$= \frac{27}{2} \text{ sq units}$$

$$= 13.5 \text{ sq units}$$

Answer.11.
$$x + y = 6$$

$$\Rightarrow$$
 $y = -x + 6$

When
$$x = 0$$
, $y = -0 + 6 = 6$

When
$$x = 1$$
, $y = -1 + 6 = 5$

When
$$x = 3$$
, $y = -3 + 6 = 3$

Thus, the points on the line x + y = 6 are as given in the following table:

Х	0	1	3
у	6	5	3

Plotting the points (0, 6), (1, 5) and (3, 3) and drawing a line passing through these points, we obtain the graph of the line x + y = 6.

$$x - y = 2$$

$$\Rightarrow$$
 $y = x - 2$

When x = 0, y = 0 - 2 = -2

When x = 2, y = 2 - 2 = 0

When x = -1, y = -1 - 2 = -3y = -1 - 2 = -3

Thus, the points on the line x - y = 2 are as given in the following table:

, F			8	
X	0	2	-1	
у	-2	0	-3	

Plotting the points (0, -2), (2, 0) and (-1, -3) and drawing a line passing through these points, we obtain the graph of the line x - y = 2.

It can be seen that the lines x + y = 6 and x - y = 2 intersect at the point (4, 2).

Answer.12. Let the contribution of A and B be $\not\in x$ and $\not\in y$, respectively.

Total contribution of A and B = $\stackrel{?}{\underset{?}{?}} x + \stackrel{?}{\underset{?}{?}} y = \stackrel{?}{\underset{?}{?}} (x + y)$

It is given that the total contribution of A and B is ≥ 100 .

$$\therefore x + y = 100$$

This is the linear equation satisfying the the given data.

$$x + y = 100$$

$$\Rightarrow y = 100 - x$$

When
$$x = 10$$
, $y = 100 - 10 = 90$

When
$$x = 40$$
, $y = 100 - 40 = 60$

When
$$x = 60$$
, $y = 100 - 60 = 40$

Thus, the points on the line x + y = 100 are as given in the following table:

х	10	40	60
у	90	60	40

Plotting the points (10, 90), (40, 60) and (60, 40) and drawing a line passing through these points, we obtain the graph of the line x + y = 100.

MULTIPLE CHOICE QUESTIONS (MCQ)

Answer.1. Correct option: (b)

The equation of the x –axis is y = 0.

Answer.2. Correct option: (a)

The equation of the y –axis is x = 0.

Answer.3. Correct option: (c)

A point which lies on the x – axis has its y – coordinate = 0, while a point which lies on the y – axis has its coordinate = 0.

So, the points of the form (a, a) lies on the line y = x since it satisfies the equation of the given line and doesn't satisfy the equation of the line x + y = 0.

Answer.4. Correct option: (d)

A point which lies on the x – axis has its y – coordinate = 0, while a point which lies on the y – axis has its coordinate = 0.

So, the points of the form (a, -a) will not lie on either axis.

Also, it does not satisfy the line y = x.

The points of the form (a, -a) lies on the line x + y = 0 since it satisfies the equation of the given line.

Answer.5. Correct option: (c)

The linear equation 3x - 5y = 15 has infinitely many solutions since any every point on this line will be a solution of this equation.

For different values of x, we will get the corresponding different values of y.

Since, x can take infinitely many values, y will also have infinite values.

Hence, the line will have infinitely many solutions.

Answer.6. Correct option: (a)

The equation 2x + 5y = 7 has a unique solution, if x and y are natural numbers.

If we take x = 1 and y = 1, the given equation is satisfied.

Answer.7. Correct option: (c)

The graph of y = 5 is a line parallel to the x-axis at a distance of 5 units from the origin.

Answer.8. Correct option: (c)

The graph of y = 5 is a line parallel to the x-axis at a distance of 5 units from the origin.

Answer.9. Correct option: (c)

The graph of x + 3 = 0 is a line parallel to the y-axis at a distance of 3 units to the left of y-axis.

Answer.10. Correct option: (c)

The graph of y + 2 = 0 is a line parallel to the x-axis at a distance of 2 units below the x-axis.

Answer.11. Correct option: (c)

When a graph meets the y-axis, the x coordinate is zero.

Thus, substituting x = 0 in the given equation, we get

$$2(0) + 3y = 6$$

$$\Rightarrow 3y = 6$$

$$\Rightarrow y = 2$$

Hence, the required point is (0, 2).

Answer.12. Correct option: (c)

When a graph meets the x-axis, the y coordinate is zero.

Thus, substituting y = 0 in the given equation, we get

$$2x + 5(0) = 10$$

$$\Rightarrow 2x = 10$$

$$\Rightarrow x = 5$$

Hence, the required point is (5, 0).

Answer.13. Correct option: (c)

The line x = 3 passes through the point (3,2)

Answer.14. Correct option: (c)

Since, the y coordinate is 3, the graph of the line y = 3 passes through the point (2, 3).

Answer.15. Correct option: (d)

The line y = -3 does not pass through the point (-3,2) since $y \neq 2$.

Answer.16. Correct option: (d)

The given linear equation is x - y = 0

Case – 1) Substituting
$$x = -\frac{1}{2}$$
 and $y = \frac{1}{2}$
L.H.S = $x - y$
= $-\frac{1}{2} - \frac{1}{2}$

$$= -1$$

 $\therefore x = -\frac{1}{2}$ and $y = \frac{1}{2}$ doesn't satisfy the given linear equation.

Case – 2) Substituting $x = \frac{3}{2}$ and $y = -\frac{3}{2}$

L.H.S =
$$x - y$$

= $\frac{3}{2} + \frac{3}{2}$

$$= 3$$

 $\therefore x = \frac{3}{2}$ and $y = -\frac{3}{2}$ doesn't satisfy the given linear equation.

Case – 3) Substituting x = 0 and y = 1

$$L.H.S = x - y$$
$$= 0 - 1$$

$$= -1$$

$$\neq$$
 R.H.S

 $\therefore x = 0$ and y = 1 doesn't satisfy the given linear equation.

Case – 4) Substituting x = 1 and y = 1

$$L.H.S = x - y$$

$$= 1 - 1$$

$$= 0$$

$$= R.H.S$$

 $\therefore x = 1$ and y = 1 satisfies the given linear equation.

Answer.17. Correct option: (b)

Since given that each of the three points is a solution of the linear equation, all three points have to satisfy the linear equation.

Substituting x = -2 and y = 2 in option (b), we get

$$L.H.S = x + y$$

$$= -2 + 2$$

$$= 0$$

 $\therefore x = -2$ and y = 2 satisfy the given linear equation.

Substituting x = 0 and y = 0 in option (b), we get

$$L.H.S = x + y$$

$$= 0 + 0$$

$$= 0$$

x = 0 and y = 0 satisfy the given linear equation.

Substituting x = 2 and y = -2 in option (b), we get

$$L.H.S = x + y$$

$$= 2 - 2$$

$$= R.H.S$$

 $\therefore x = 2$ and y = -2 satisfy the given linear equation.

Answer.18. Correct option: (d)

Infinitely many linear equations can be satisfied by x = 2 and y = 3.

Answer.19. Correct option: (d)

$$a \neq 0, b \neq 0$$

Answer.20. Correct option: (d)

Since, (2,0) is a solution of the linear equation 2x + 3y = k, substituting x = 2 and y = 0 in the given equation, we have

$$2(2) + 3(0) = k$$

$$\Rightarrow$$
 4 + 0 = k

$$\Rightarrow k = 4$$

Answer.21. Correct option: (c)

Any point on x – axis is of the form (x, 0), where $x \neq 0$, since its y – coordinate will be 0 always.

Answer.22. Correct option: (b)

Any point on y – axis is of the form (0, y), where $y \neq 0$, since its x – coordinate will be 0.

Answer.23. Correct option: (c)

Putting x = 5 and y = 2 in L.H.S of equation x + y = 7, we get

$$L.H.S = 5 + 2 = 7 = R.H.S$$

Hence, x = 5 and y = 2 is a solution of the linear equation x + y = 7.

Answer.24. Correct option: (b)

Since the point (3,4) lies on the graph of 3y = ax + 7, substituting x = 3 and y = 4 in the given equation, we get

$$3(4) = a(3) + 7$$

$$\Rightarrow 12 = 3a + 7$$

$$\Rightarrow 3a = 5$$

$$\Rightarrow a = \frac{5}{3}$$

