Percentage Ex 9A

Definition

Percent can be defined as "of one hundred."

PERCENTAGE:

$$\frac{x}{n} \times 100 = p$$

where:

x = given quantity

n = total amount

p = percentage of the quantity compared to the total

Percentage increase = actual increase original amount × 100%

Percentage decrease = $\frac{\text{actual decrease}}{\text{original amount}} \times 100\%$

Percent Decimal Fraction

50% \bigcirc 0.50 \bigcirc $\frac{50}{100}$

$$60\% = \frac{60}{100} = 0.6$$

Percent means "per one hundred", so to convert a percent to a fraction, divide it by 100.

Q1

Answer:

- (i) 48%
- $=\frac{48}{100}$
- $=\frac{12}{25}$
- (ii) 220%
- $=\frac{220}{100}$
- $=\frac{11}{5}$
- (iii) 2.5%
- $=\frac{2.5}{100}$
- $=\frac{25}{1000}$
- $=\frac{1}{40}$

Q2

Answer:

- (i) $6\% = \frac{6}{100} = 0.06$
- (ii) $72\% = \frac{72}{100} = 0.72$
- (iii) $125\% = \frac{125}{100} = 1.25$

Q3

Answer:

- (i) $\frac{9}{25}$
- $= \left(\frac{9}{25} \times 100\right)\%$
- $=(9\times4)\%$
- = 36%
- (ii) $\frac{3}{125}$ = $\left(\frac{3}{125} \times 100\right)\%$
- = 2.4%
- (iii) $\frac{12}{5}$
- $= \left(\frac{12}{5} \times 100\right)\%$
- = 240%

$$4:5 = \frac{4}{5} = \left(\frac{4}{5} \times 100\right)\%$$

= 80%

Q5

Answer:

$$125\%$$

$$= \frac{125}{100}$$

$$= \frac{5}{4} = 5:4$$

Q6

Answer:

We have: $6\frac{2}{3}\% = \frac{20}{3}\%$ $= \left(\frac{20}{3} \times \frac{1}{100}\right)$

$$= \frac{1}{15}$$
= 0.06
Also, $\frac{3}{20} = 0.15$

The third number is 0.14. Clearly, 0.15 is the largest.

Hence, $\frac{3}{20}$ is the largest.

Q7

Answer:

(i) Required percentage =
$$\left(\frac{96}{150} \times 100\right)\% = 64\%$$

(ii) Required percentage =
$$\left(\frac{200}{5\times1000}\times100\right)\% = 4\%$$

(iii) Required percentage =
$$\left(\frac{250}{2 \times 1000} \times 100\right)\% = 12.5\%$$

Q8

Answer:

$$4\frac{1}{2}\% = \frac{9}{2\times100}$$

\therefore \frac{9}{200} \text{ of Rs } 3600 = \frac{9}{200} \times 3600 = \text{Rs } 162

Q9

Answer:

Let the number be x.

16% of x is 72.

$$\Rightarrow \frac{16}{100} \times \boldsymbol{x} = 72$$

$$\Rightarrow 16\mathbf{x} = 72 \times 100$$

$$\Rightarrow 16x = 7200$$

$$\Rightarrow \boldsymbol{x} = \frac{7200}{16} = 450$$

... The required number is 450.

Let Rs x be his monthly income. His savings = 18% of Rs x

$$= \text{Rs} \left(x \times \frac{18}{100} \right)$$

$$= \text{Rs} \frac{9x}{50}$$
Now, $\frac{9x}{50} = 1890$

$$\Rightarrow x = \text{Rs} \left(1890 \times \frac{50}{9} \right)$$

$$\Rightarrow x = \text{Rs} \ 10500$$

.. His monthly income is Rs. 10500.

Q11

Answer:

Let x be the total number of games played. Percentage of games won = 35% of x

$$= \left(x \times \frac{35}{100}\right)$$
$$= \frac{35x}{100}$$

Now,
$$\frac{35x}{100} = 7$$

 $\Rightarrow x = \left(7 \times \frac{100}{35}\right)$
 $\Rightarrow x = 20$

.. The total number games played is 20.

Q12

Answer:

Let Rs x be Amit's old salary.

His salary after increment will be Rs $\left(x + \frac{20}{100} x\right)$

According to the question, we have:

⇒
$$x + \frac{20}{100} x = 15300$$

⇒ $\frac{100x + 20x}{100} = 15300$ (LCM = 100)
⇒ $\frac{120x}{100} = 15300$
⇒ $120x = 15300 \times 100$
⇒ $x = \frac{15300 \times 100}{120}$
⇒ $x = 12750$

... The old salary is Rs 12,750.

Q13

Answer:

Let x be the number of days the school was opened. Number of days Sonal attended school = 204 days Percentage of her attendance = 85% of x

$$= \left(\mathbf{x} \times \frac{85}{100}\right)$$
$$= \frac{85\mathbf{x}}{100}$$

Now,
$$\frac{85x}{100} = 204$$

$$\Rightarrow x = \left(204 \times \frac{100}{85}\right)$$

$$\Rightarrow x = 240$$

 \therefore The school was opened for 240 day.

Q14

Answer:

Let B's income be Rs 100Then, A's income = Rs 80

Therefore, B's income is more than A's income by $=\frac{(100-80)}{80} \times 100\%$ $=\frac{20}{80} \times 100\% = 25\%$

= Rs125

.. B's income is more than that of A's by (125 - 100)%, i.e., 25%.

Let the consumption of petrol originally be 1 unit and let its cost be Rs 100.

New cost of 1 unit of petrol = Rs 110

Now, Rs 110 will yield 1 unit of petrol.

i.e., Rs 100 will yield $\left(\frac{1}{110} \times 100\right)$, i.e., $\frac{10}{11}$ units of petrol.

Now, reduction in consumption = $\left(1 - \frac{10}{11}\right) = \frac{1}{11}$ unit

Percentage of reduction = $\left(\frac{1}{11} \times \frac{1}{1} \times 100\right)\% = 9\frac{1}{11}\%$

 \therefore A motorist must reduce the consumption of petrol by $9\frac{1}{11}\%$.

Q16

Answer:

Let x be the population of the town a year ago. Then, present population = 108% of x $= \left(x \times \frac{108}{100}\right) = \frac{27x}{25}$

Now, $\frac{27x}{25} = 54000$ $\Rightarrow x = \left(54000 \times \frac{25}{27}\right)$ $\Rightarrow x = 50000$

Hence, the population of the town a year ago was 50000.

Q17

Answer:

Let Rs x be the value of the machine last year.

Then, present value = 80% of Rs x

$$= \operatorname{Rs}\left(\mathbf{x} \times \frac{80}{100}\right)$$

$$= \operatorname{Rs} \frac{4x}{5}$$

Now,
$$\frac{32}{5} = 160000$$

$$\Rightarrow \mathbf{x} = \left(160000 \times \frac{5}{4}\right)$$

$$\Rightarrow$$
 x = 40000 \times 5 = 200000

Percentage of zinc = $\{100 - (40 + 32)\}\%$

$$= 28\%$$

 \therefore Mass of zinc in 1 kg of alloy = $\left(\frac{28}{100} \times 1\right)$ kg

$$= 0.28 \text{ kg} = 0.28 \times 1000 \text{ g} = 280 \text{ g}$$

Q19

Answer:

Amount of protein = 12% of 2600

$$=\left(2600 \times \frac{12}{100}\right)$$

$$=$$
 312 cal

Amount of fat = 25% of 2600

$$= \left(2600 \times \frac{25}{100}\right)$$

$$=650$$
 cal

 ${\bf Amount\ of\ carbohydrate} = 63\%\ of\ 2600$

$$= \left(2600 \times \frac{63}{100}\right)$$

= 1638 cal

Let x be the amount of gunpowder.

Amount of nitre = 75%

Let x kg be the amount of gunpowder containing 9 kg of nitre.

i.e.,
$$(75\% \text{ of } x) = 9 \text{ kg}$$

$$\Rightarrow \left(x \times \frac{75}{100}\right) = 9$$

$$\Rightarrow \frac{75x}{100} = 9$$

$$\Rightarrow \boldsymbol{x} = \left(9 \times \frac{100}{75}\right)$$

$$\Rightarrow x = 12 \text{ kg}$$

Hence, 12 kg of gunpowder contains 9 kg of nitre.

Now, amount of sulphur = 10%

Let x kg be the amount of gunpowder containing 2.5 kg of sulphur.

i.e.,
$$(10\% \text{ of } x) = 2.5 \text{ kg}$$

$$\Rightarrow \left(x \times \frac{10}{100}\right) = 2.5$$

$$\Rightarrow \frac{10\mathbf{z}}{100} = 2.5$$

$$\Rightarrow \frac{\mathbf{z}}{10} = 2.5$$

$$\Rightarrow x = (2.5 \times 10)$$

$$\Rightarrow x = 25 \text{ kg}$$

Hence, 25 kg of gunpowder contains 2.5 kg of sulphur.

Q21

Let Rs x be the amount of money recieved by C.

Then, amount of money B gets = (50% of Rs x)

Amount of money A gets = (50% of B)

$$= (25\% \text{ of Rs x})$$

Now, x + (50% of Rs x) + (25% of Rs x) = Rs 7000

$$\Rightarrow x + \left(x \times \frac{50}{100}\right) + \left(x \times \frac{25}{100}\right) =$$
Rs 7000

$$\Rightarrow x + \frac{50x}{100} + \frac{25x}{100} =$$
Rs 7000

$$\Rightarrow \left(x + \frac{50x}{100} + \frac{25x}{100}\right) = \text{Rs } 7000$$

$$\Rightarrow \frac{175x}{100} = \text{Rs } 7000$$

$$\Rightarrow x = \text{Rs}\left(7000 \times \frac{100}{175}\right)$$

$$\Rightarrow x = \text{Rs } 4000$$

∴ C gets Rs 4000.

Amount of money B gets = (50% of Rs x)

$$= Rs \left(4000 \times \frac{50}{100}\right)$$

$$= Rs 2000$$

Amount of money A gets = (25% of Rs x)

$$= ext{Rs} \left(4000 imes rac{25}{100}
ight)$$

$$=$$
Rs 1000

Q22

Answer:

22 carat gold contains 22 parts pure gold out of 24 parts.

Also, 24 carat gold is given to be 100% pure.

$$\therefore$$
 Percentage of pure gold in 22 carat gold = $\left(\frac{22}{24} \times 100\right)\%$

$$=91\frac{2}{3}\%$$

Hence, 22 carat gold contains $91\frac{2}{3}\%$ of pure gold.

Q23.

Let the original salary be Rs 100

Then, after increment of 25% the salary becomes

$$= 100 \left(1 + \frac{25}{100} \right) = 100 \left(\frac{125}{100} \right) = Rs \, 125$$

To restore the original salary, let the new salary be decreased by x%. Thus, we get

$$\begin{array}{l} 125\Big(1-\frac{x}{100}\Big) \ = \ 100 \\ \Rightarrow \Big(1-\frac{x}{100}\Big) \ = \ \frac{100}{125} \ = \ \frac{4}{5} \\ \Rightarrow \frac{x}{100} \ = \ \frac{1}{5} \\ \Rightarrow x \ = \ \frac{100}{5} \ = 20 \ \% \end{array}$$
 Therefore, the new salary must be reduced by 20% to restore the original salary.

