Volume and Surface Area of Solids Ex 20.A

Name of the solid	Figure	Volume	Laterial/Curved Surface Area	Total Surface Area
Cuboid	b l	lbh	2lh + 2bh or 2h(l+b)	2lh+2bh+ <mark>2lb</mark> or 2(lh+bh+lb)
Cube	aaa	a ³	4a²	4a²+ <mark>2a²</mark> or 6a²
Right circular cylinder	h	$\pi \mathrm{r}^{2}\mathrm{h}$	2πrh	2πrh + <mark>2πr²</mark> or 2πr(h+r)
Right circular cone	h	$\frac{1}{3}\pi r^2 h$	πrl	$\pi r l + \pi r^2$ or $\pi r (l+r)$
Sphere		$\frac{4}{3}\pi r^3$	$4\pi { m r}^2$	$4\pi {\rm r}^2$
Hemisphere	r	$\frac{2}{3}\pi r^3$	$2\pi r^2$	$2\pi r^2 + \pi r^2$ or $3\pi r^2$

Q1.

Answer:

Volume of a cylinder = $\pi r^2 \, h$ Lateral surface $=2\pi rh$

Total surface area $=2\pi r(h+r)$

(i) Base radius = 7 cm; height = 50 cm

Now, we have the following:

 $\begin{array}{l} \text{Volume} = \frac{22}{7} \times 7 \times 7 \times 50 = 7700 \ \textit{cm}^3 \\ \text{Lateral surface area} = 2\pi \textit{rh} = 2 \times \frac{22}{7} \times 7 \times 50 = 2200 \ \textit{cm}^2 \end{array}$

Total surface area = $2\pi r(h+r) = 2 \times \frac{22}{7} \times 7(50+7) = 2508 \ cm^2$

(ii) Base radius = 5.6 m; height = 1.25 m

Now, we have the following:

Volume= $\frac{22}{7} \times 5.6 \times 5.6 \times 1.25 = 123.2~m^3$ Lateral surface area= $2\pi rh$ = $2 \times \frac{22}{7} \times 5.6 \times 1.25 = 44~m^2$ Total surface area = $2\pi r(h+r)$ = $2 \times \frac{22}{7} \times 5.6(1.25+5.6) = 241.12~m^2$

(iii) Base radius = 14 dm = 1.4 m, height = 15 m

Now, we have the following:

 $\text{Volume} = \tfrac{22}{7} \times 1.4 \times 1.4 \times 15 = 92.4 \ m^3$

Lateral surface area = $2\pi r h$ = $2 \times \frac{22}{7} \times 1.4 \times 15 = 132~m^2$

Total surface area $=2\pi r(h+r)=\overset{'}{2}\times \frac{22}{7}\times 1.4(15+1.4)=144.32~cm^2$

```
Q2.
```

Answer:

$$r = 1.5 \text{ m}$$

$$h = 10.5 \,\mathrm{m}$$

Capacity of the tank = volume of the tank = $\pi r^2 h = \frac{22}{7} \times 1.5 \times 1.5 \times 10.5 = 74$

We know that $1 \text{ m}^3 = 1000 \text{ L}$

$$\therefore 74.25 \text{ m}^3 = 74250 \text{ L}$$

Q3.

Answer:

Height = 7 m

Radius = 10 cm = 0.1 m

Volume= $\pi r^2 h = \frac{22}{7} \times 0.1 \times 0.1 \times 7 = 0.22~m^3$

Weight of wood = 225 kg/m³

 \therefore Weight of the pole= $0.22 \times 225 = 49.5~kg$

Q4.

Answer:

Diameter = 2r = 140 cm

i.e., radius, r = 70 cm = 0.7 m

Now, volume $=\pi r^2 h = 1.54~m^3$

$$\Rightarrow \frac{22}{7} \times 0.7 \times 0.7 \times h = 1.54$$

$$h = \frac{1.54 \times 7}{0.7 \times 0.7 \times 22} = \frac{154 \times 7}{154 \times 7} = 1 m$$

Q5.

Answer:

Volume = $\pi r^2 h = 3850 \text{ cm}^3$

Height = 1 m =100 cm

Now, radius,
$$r=\sqrt{\frac{3850}{\pi \times h}}=\sqrt{\frac{3850 \times 7}{22 \times 100}}=1.75 \times 7=3.5~cm$$

 \therefore Diameter =2(radius) = $2 \times 3.5 = 7$ cm

Q6.

Answer:

Diameter = 14 m

Radius
$$= rac{14}{2} = 7~m$$

Height = 5 m

: Area of the metal sheet required = total surface area

$$= 2\pi \mathbf{r} \left(\mathbf{h} + \mathbf{r} \right)$$

$$= 2 \times \frac{22}{7} \times 7 \left(5 + 7 \right) m^2$$

$$= 44 \times 12 m^2$$

$$= 528 m^2$$

Q7.

Answer:

Circumference of the base = 88 cm

Height = 60 cm

Area of the curved surface $= circumference imes height = 88 imes 60 = 5280 \ cm^2$

Circumference
$$=2\pi {f r}=88~cm$$

Then radius=
$$r=\frac{66}{2\pi}=\frac{68\times 1}{2\times 22}=14~cm$$

Then radius= $r=\frac{88}{2\pi}=\frac{88\times7}{2\times22}=14~cm$:: Volume= $\pi r^2 h=\frac{22}{7}\times14\times14\times60=36960~cm^3$

Q8.

Answer:

Length = height = 14 m Lateral surface area $= 2\pi r h = 220~m^2$ Radius = $r = \frac{220}{2\pi \mathbf{h}} = \frac{220 \times 7}{2 \times 22 \times 14} = \frac{10}{4} = 2.5 \ m$ $\therefore \text{ Volume} = \pi \mathbf{T}^2 \mathbf{h} = \frac{22}{7} \times 2.5 \times 2.5 \times 14 = 275 \ \mathbf{m}^3$

Q9.

Answer:

Height = 8 cm

Volume =
$$\pi r^2 h = 1232 \text{ cm}^3$$

Now, radius=
$$m{r}=\sqrt{rac{1232}{\pi\hbar}}=\sqrt{rac{1232 imes7}{22 imes8}}=\sqrt{49}=7cm$$

Also, curved surface area $=2\pi rh=2 imes rac{22}{7} imes 7 imes 8=352$ cm^2

∴ Total surface area

$$= 2\pi r \left(h + r \right) = \left(2 \times \frac{22}{7} \times 7 \times 8 \right) + \left(2 \times \frac{22}{7} \times (7)^2 \right) = 352 + 308 = 660 \text{ cm}^2$$

Q10.

Answer:

We have:
$$rac{radius}{height}=rac{7}{2}$$
 i.e., $m{r}=rac{7}{2}\,m{h}$

i.e.,
$${m r}=rac{7}{2}\,{m h}$$

Now, volume
$$=\pi \mathbf{r}^2\mathbf{h}=\pi \left(\frac{7}{2}\,\mathbf{h}\right)^2\mathbf{h}=8316\,\,\mathbf{cm}^3$$

$$\Rightarrow \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times h^3 = 8316$$

$$\Rightarrow h^3 = \frac{8316 \times 2}{11 \times 7} = 108 \times 2 = 216$$

$$\Rightarrow h = \sqrt[3]{216} = 6 \ cm$$

Then
$$oldsymbol{r}=rac{7}{2}\,oldsymbol{h}=rac{7}{2} imes6=21\,cm$$

$$\therefore$$
 Total surface area $=2\pi {f r}\Big(h+r\Big)=2 imes rac{22}{7} imes 21 imes \Big(6+21\Big)=3564~{
m cm}^2$

Q11.

Answer:

Curved surface area $=2\pi rh=4400~cm^2$

 $\text{Circumference} = 2\pi r = 110~\text{cm}$

Now, height=
$$h = \frac{curved\ surface\ area}{circumference} = \frac{4400}{110} = 40\ cm$$

Also, radius,
$$m{r}=rac{4400}{2\pi \mathbf{h}}=rac{4400 imes 7}{2 imes 22 imes 40}=rac{35}{2}$$

$$\cdot\cdot$$
 Volume= $\pi r^2 h = \frac{22}{7} \times \frac{35}{2} \times \frac{35}{2} \times 40 = 22 \times 5 \times 35 \times 10 = 38500~cm^3$

O12.

Answer:

For the cubic pack: Length of the side, a = 5 cm Height = 14 cm $Volume = a^2h = 5 \times 5 \times 14 = 350 \ cm^3$

For the cylindrical pack: Base radius = r = 3.5 cm

Height = 12 cm

Volume= $\pi r^2 h = \frac{22}{7} \times 3.5 \times 3.5 \times 12 = 462 \text{ cm}^3$

We can see that the pack with a circular base has a greater capacity than the pack with a square base. Also, difference in volume= $462-350=112\ cm^3$

Q13.

Answer:

Diameter = 48 cm Radius = 24 cm = 0.24 m Height = 7 m

Now, we have:

Lateral surface area of one pillar= $\pi dh = \frac{22}{7} \times 0.48 \times 7 = 10.56 \text{ m}^2$ Surface area to be painted = total surface area of 15 pillars = $10.56 \times 15 = 158.4 \text{ m}^2$ \therefore Total cost= Rs (158.4×2.5) = Rs 396

Q14.

Answer:

Volume of the rectangular vessel = $22 \times 16 \times 14 = 4928~cm^3$ Radius of the cylindrical vessel = 8 cm Volume= $\pi r^2 h$

As the water is poured from the rectangular vessel to the cylindrical vessel, we have Volume of the rectangular vessel = volume of the cylindrical vessel

.. Height of the water in the cylindrical vessel= $\frac{volume}{\pi r^2}=\frac{4928\times 7}{22\times 8\times 8}=\frac{28\times 7}{8}=\frac{49}{2}=24.5~\textit{cm}$

O15.

Answer:

Diameter of the given wire = 1 cm

Radius = 0.5 cm

Length = 11 cm

Now, volume= $\pi \mathbf{r}^2 \mathbf{h} = \frac{22}{7} \times 0.5 \times 0.5 \times 11 = 8.643 \ cm^3$

The volumes of the two cylinders would be the same.

Now, diameter of the new wire = 1 mm = 0.1 cm

Radius = 0.05 cm

$$\cdot$$
 New length $= rac{ ext{volume}}{ ext{rt}^2} = rac{8.643 imes 7}{22 imes 0.05 imes 0.05} = 1100.02 \ cm \cong$ 11 m

Q16.

Answer:

Length of the edge, a = 2.2 cmVolume of the cube $= a^3 = (2.2)^3 = 10.648 \text{ cm}^3$ Volume of the wire= $\pi r^2 h$ Radius = 1 mm = 0.1 cm As volume of cube = volume of wire, we have:

$$h = \frac{volume}{m^2} = \frac{10.648 \times 7}{22 \times 0.1 \times 0.1} = 338.8 \text{ cm}$$

Answer:

Diameter = 7 m

Radius = 3.5 m

Depth = 20 m

Volume of the earth dug out $= \pi r^2 h = \frac{22}{7} \times 3.5 \times 3.5 \times 20 = 770 \text{ m}^3$ Volume of the earth piled upon the given plot= $28 \times 11 \times h = 770 \text{ m}^3$

$$h = \frac{770}{28 \times 11} = \frac{70}{28} = 2.5 m$$

Q18.

Answer:

Inner diameter = 14 m

i.e., radius = 7 m

Depth = 12 m

Volume of the earth dug out= $\pi r^2 h = \frac{22}{7} \times 7 \times 7 \times 12 = 1848~m^3$

Width of embankment = 7 m

Now, total radius $= 7 + 7 = 14 \; m$

 $\label{eq:Volume} \mbox{Volume of the embankment} = \mbox{total volume} \ - \ \mbox{inner volume}$

$$=\pi r_{o}^{2}h-\pi r_{i}^{2}h=\pi h(r_{o}^{2}-r_{i}^{2})$$

$$=\frac{22}{7} h (14^2 - 7^2) = \frac{22}{7} h (196 - 49)$$

$$=\frac{22}{7}\,\mathbf{h} \times 147 = 21 \times 22\mathbf{h}$$

$$=462 \times h m^3$$

Since volume of embankment = volume of earth dug out, we have:

$$1848 = 462 \, h$$

$$\Rightarrow h = \frac{1848}{462} = 4 \; m$$

∴ Height of the embankment = 4 m

Q19.

Answer:

Diameter = 84 cm

i.e., radius = 42 cm

Length = 1 m = 100 cm

Now, lateral surface area $=2\pi rh=2\times\frac{22}{7}\times42\times100=26400~cm^2$

 $\ \, \hbox{$\stackrel{.}{.}$ Area of the road}$

= lateral surface area \times no. of rotations = $26400 \times 750 = 19800000~\text{cm}^2 = 1980~\text{m}^2$

Q20.

Answer:

Thickness of the cylinder = 1.5 cm

External diameter = 12 cm

i.e., radius = 6 cm

also, internal radius = 4.5 cm

Height = 84 cm

Now, we have the following:

Total volume= $\pi r^2 h = \frac{22}{7} \times 6 \times 6 \times 84 = 9504 \text{ cm}^3$

Inner volume = $\pi r^2 h = \frac{22}{7} \times 4.5 \times 4.5 \times 84 = 5346 \text{ cm}^3$

Now, volume of the metal = total volume – inner volume $= 9504 - 5346 = 4158 \ cm^3$

 \therefore Weight of iron $=4158 \times 7.5=31185~\mathrm{g}=31.185~\mathrm{kg}$ [Given: $1~\mathrm{cm}^3=7.5\mathrm{g}$]

Q21.

Answer:

Length = 1 m = 100 cm
Inner diameter = 12 cm
Radius = 6 cm
Now, inner volume= $\pi r^2 h = \frac{22}{7} \times 6 \times 6 \times 100 = 11314.286 \ cm^3$
Thickness = 1 cm
Total radius = 7 cm

Now, we have the following:

Total volume= $\pi r^2 h = \frac{22}{7} \times 7 \times 7 \times 100 = 15400 \ cm^3$

Volume of the tube = $total\ volume - inner\ volume =\ 15400-11314.286 = 4085.714\ cm^3$

Density of the tube = 7.7 g/cm^3

 \therefore Weight of the tube = $volume \times density = 4085.714 \times 7.7 = 31459.9978 g = 31.459 kg$