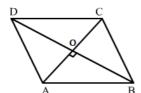
Parallelograms Exercise 16B

Q1


Answer:

(c) rhombus

In a rhombus, the two diagonals are not necessarily equal.

Q2

(c) 10 cm

Let ABCD be a rhombus.

Let AC and BD be the diagonals of the rhombus intersecting at a point O.

$$AC = 16$$
 cm

$$BD = 12$$
 cm

We know that the diagonals of a rhombus bisect each other at right angles.

$$\begin{split} \therefore \ AO &= \tfrac{1}{2} \, AC \\ &= \left(\tfrac{1}{2} \times 16 \right) \, \mathrm{cm} \\ &= 8 \, \, \mathrm{cm} \\ BO &= \tfrac{1}{2} \, BD \\ &= \left(\tfrac{1}{2} \times 12 \right) \, \mathrm{cm} \\ &= 6 \, \, \mathrm{cm} \end{split}$$

From the right $\triangle AOB$:

$$AB^{2} = AO^{2} + BO^{2}$$

$$= \{(8)^{2} + (6)^{2}\} \text{ cm}^{2}$$

$$= (64 + 36) \text{ cm}^{2}$$

$$= 100 \text{ cm}^{2}$$

$$\Rightarrow AB = \sqrt{100} \text{ cm}$$

$$= 10 \text{ cm}$$

Hence, the length of the side ABis10 cm.

Therefore, the length of each side of the rhombus is 10 cm because all the sides of a rhombus are equal.

Q3

Answer:

We know that the sum of adjacent angles of a parallelogram is 180°.

$$\Rightarrow 2x + 25 + 3x - 5 = 180$$

$$\Rightarrow 5x + 20 = 180$$

$$\Rightarrow 5x = 180 - 20$$

$$\Rightarrow 5x = 160$$

$$\Rightarrow x = \frac{160}{5}$$

$$\Rightarrow x = 32$$

Therefore, the value of x is 32.

Q4

Answer:

(a) parallelogram

In a parallelogram, the diagonals do not necessarily intersect at right angles.

```
Answer:
                 (c) 70 cm
                 Let ABCD be a rectangle and let the diagonal AC be 25 cm, length AB be 4x cm and
                  breadth BC be 3x cm.
                 Each angle of a rectangle is a right angle.
                 ∴ ∠ABC = 90°
                 From the right \triangle ABC:
                 AC^2 = AB^2 + BC^2
                 \Rightarrow (25)^2 = (4x)^2 + (3x)^2
                 \Rightarrow 625 = 16\boldsymbol{x}^2 + 9\boldsymbol{x}^2
                 \Rightarrow 625 = 25x^2
                 x^2 = \frac{625}{25} = 25
                 \Rightarrow \boldsymbol{x} = 5
                  \therefore L ength = 4 × 5 = 20 cm
                 \textbf{Breadth} = 3 \times 5 = 15 \ \textbf{cm}
                 \therefore Perimeter of the rectangle = 2(20+15) cm
   Q6
                                               = 70 cm
    Answer:
    The bisectors of any two adjacent angles of a parallelogram intersect at 90^{\circ}.
   Q7
    Answer:
    (b) 72°
    Let x^{\circ} be the angle of the parallelogram.
    Sum of the adjacent angles of a parallelogram is 180\,^{\circ}.
    \therefore x + \left(\frac{2}{3} \times x\right) = 180
     \Rightarrow x + \frac{2x}{3} = 180
     \Rightarrow \left(x + \frac{2x}{3}\right) = 180
     \Rightarrow \frac{5x}{3} = 180
     \Rightarrow x = \left(180 \times \frac{3}{5}\right)
    Hence, one angle of the parallelogram is 108^{\circ}.
    Its adjacent angle = (180 - 108)^{\circ} = 72^{\circ}
    Therefore, the smallest angle of the parallelogram is 72°.
   Q8
   Answer:
   (a) r ectangle
   In a rectangle, the diagonals do not necessarily bisect the interior angles at the vertices.
   Q9
   Q10
   Answer:
   (d) 8
   All the sides of a square are equal.
   AB = BC
    \Rightarrow 2x + 3 = 3x - 5
    \Rightarrow 3+5=3x-2x
    \Rightarrow 8 = x
    Therefore, the value of x is 8.
Answer:
(c) 112°
Let x^{\circ} be the smallest angle of the parallelogram.
The sum of adjacent angles of a parallelogram is 180^{\circ}.
\therefore x + 2x - 24 = 180
 \Rightarrow 3x - 24 = 180
\Rightarrow 3x = 180 + 24
 \Rightarrow 3x = 204
 \Rightarrow x = \frac{204}{3}
 \Rightarrow x = 68
 .. Smallest angle = 68°
L \, \text{argest angle} = (180 - 68)^{\circ} = 112^{\circ}
```