Time and Work

1. Work from Days:

Ex 13A

If A can do a piece of work in *n* days, then A's 1 day's work = $\frac{1}{n}$

2. Days from Work:

If A's 1 day's work = $\frac{1}{n}$, then A can finish the work in n days.

3. Ratio:

If A is thrice as good a workman as B, then:

Ratio of work done by A and B = 3: 1.

Ratio of times taken by A and B to finish a work = 1:3.

Q1.

Answer:

Work done by Rajan in 1 day $= \frac{1}{24}$

Work done by Amit in 1 day = $\frac{1}{30}$

Work done by Amit and Rajan together in 1 day = $\frac{1}{24} + \frac{1}{30} = \frac{54}{720} = \frac{3}{40}$

Q2. \therefore They can complete the work in $\frac{40}{3}$ days, i.e., $13\frac{1}{3}$ days if they work together.

Answer:

Time taken by Ravi = 15 h

Time taken by Raman = 12 h

Work done per hour by Ravi $=\frac{1}{15}$

Work done per hour by Raman $= \frac{1}{12}$

Work done per hour by Ravi and Raman together $=\frac{1}{15}+\frac{1}{12}=\frac{9}{60}=\frac{3}{20}$

... Time taken by Ravi and Raman together to finish the work $=\frac{20}{3}$ h $=6\frac{2}{3}$ h Q3.

Answer:

Time taken by A and B to finish a piece of work = 6 days

Work done per day by A and B = $\frac{1}{6}$

Time taken by A alone = 9 days

Work done per day by A alone $=\frac{1}{9}$

Work done per day by B = (work done by A and B) - (work done by A)

$$=\frac{1}{6}-\frac{1}{9}=\frac{3-2}{18}=\frac{1}{18}$$

... B alone will take 18 days to complete the work.

Q4.

Answer:

Time taken by Raju = 15 h

Work done by Raju in $1 h = \frac{1}{15}$

Time taken by Raju and Siraj working together $=6\,\mathrm{h}$

Work done by Raju and Siraj in $1 h = \frac{1}{6}$

Work done by Siraj in 1 h = (work done by Raju and Siraj)

$$-\left(\text{work done by Raju}\right)$$

$$=\frac{1}{6}-\frac{1}{15}=\frac{5-2}{30}=\frac{3}{30}=\frac{1}{10}$$

... Siraj will take 10 h to overhaul the scooter by himself.

Q5.

Answer:

Time taken by A to complete the work = 10 days

Time taken by B to complete the work $\,=\,12$ days

Time taken by C to complete the work = 15 days

Work done per day by $A = \frac{1}{10}$

Work done per day by $B = \frac{1}{12}$

Work done per day by $C = \frac{1}{15}$

Total work done per day $=\frac{1}{10}+\frac{1}{12}+\frac{1}{15}=\frac{6+5+4}{60}=\frac{15}{60}=\frac{1}{4}$

A, B and C will take 4 days to complete the work if they work together.

```
Answer:
```

Time taken by A to complete the piece of work = 24 h Work done per hour by A = $\frac{1}{24}$ Time taken by B to complete the work = 16 h Work done per hour by B = $\frac{1}{16}$ Total time taken when A, B and C work together = 8 h Work done per hour by A, B and C = $\frac{1}{8}$ Work done per hour by A, B and C = $\frac{1}{8}$ work done per hour by B) + (work done per hour by C) (Work done per hour by C) = (work done per hour by A, B and C) - (work done per hour by A) - (work done per hour by B) = $\frac{1}{8} - \frac{1}{24} - \frac{1}{16} = \frac{6-2-3}{48} = \frac{1}{48}$

Thus, C alone will take 48 h to complete the work.

Q7.

Answer:

A can complete the work in 20 h.

Work done per hour by $A = \frac{1}{20}$

B can complete the work in 24 h.

Work done per hour by $B = \frac{1}{24}$

It takes 8 h to complete the work if A, B and C work together.

Work done together per hour by A, B and $C = \frac{1}{8}$

(Work done per hour by C) = (work done per hour by A, B and C)
$$-\left(\text{work done per hour by A}\right) - \left(\text{work done per hour by B}\right)$$
$$= \frac{1}{8} - \frac{1}{24} - \frac{1}{20} = \frac{1}{30}$$

... C alone will take 30 h to complete the work.

Q8.

Answer:

Time taken by A to complete the work = 16 days

Work done per day by $A = \frac{1}{16}$

Time taken by B to complete the work = 12 days

Work done per day by $B = \frac{1}{12}$

Work done per day by A and B = $\frac{1}{12} + \frac{1}{16} = \frac{4+3}{48} = \frac{7}{48}$

Work done by A in two days $=\frac{2}{16}=\frac{1}{8}$

Work left =
$$1 - \frac{1}{8} = \frac{7}{8}$$

A and B together can complete $\frac{7}{48}$ of the work in 1 day.

Then, time taken to complete $\frac{7}{8}$ of the work $=\frac{7}{8}\div\frac{7}{48}=\frac{7}{8}\times\frac{48}{7}=6$ days \therefore Total time taken =6+2=8 days.

Q9.

Answer:

Time taken by A to complete the work = 14 days

Work done by A in one day $=\frac{1}{14}$

Time taken by B to complete the work = 21 days

Work done by B in one day $=\frac{1}{21}$

Work done jointly by A and B in one day $= \frac{1}{14} + \frac{1}{21} = \frac{3+2}{42} = \frac{5}{42}$

Work done by A and B in 6 days = $\frac{5}{42}$ × 6 = $\frac{5}{7}$

Work left = $1 - \frac{5}{7} = \frac{2}{7}$

With B working alone, time required to complete the work $=\frac{2}{7} \div \frac{1}{21} = \frac{2}{7} \times 21 = 2 \times 3 = 6$ days

So, the total time taken to complete the work = 6 + 6 = 12 days

Q10.

Answer:

A can do $\frac{2}{3}$ work in 16 days

So, work done by A in one day $=\frac{2}{48}=\frac{1}{24}$

B can do $\frac{1}{4}$ work in 3 days

So, work done by B in one day $=\frac{1}{12}$

Work done jointly by A and B in one day $=\frac{1}{24}+\frac{1}{12}=\frac{1+2}{24}=\frac{3}{24}=\frac{1}{8}$ So, A and B together will take 8 days to complete the work.

Q11.

Answer:

Time taken by A = 15 days

Time taken by B = 12 days

Time taken by C = 20 days

Work d by A in one day $=\frac{1}{15}$

Work done by B in one day $=\frac{1}{12}$

Work done by C in one day $=\frac{1}{20}$

Work done in one day by A, B and C together $=\frac{1}{15}+\frac{1}{12}+\frac{1}{20}=\frac{4+5+3}{60}=\frac{12}{60}=\frac{1}{5}$

Work done by A, B and C together in 2 days $=\frac{2}{5}$

Work remaining $=1-\frac{2}{5}=\frac{3}{5}$

Work done by A and B in one day $=\frac{1}{15} + \frac{1}{12} = \frac{9}{60} = \frac{3}{20}$

Time required by A and B to complete the remaining work together $=\frac{3}{5}\div\frac{3}{20}=\frac{3}{5}$ $\times\frac{20}{3}=4$ days

Q12.

Answer:

Time needed by A and B to finish the work = 18 days

Time needed by B and C to finish the work =24 days

Time needed by C and A to finish the work =36 days

Work done by A and B in one day $=\frac{1}{18}$

Work done by B and C in one day $=\frac{1}{24}$

Work done by C and A in one day $=\frac{1}{36}$

 $2 \times \text{Work done by A, B and C in one day } = \frac{1}{18} + \frac{1}{24} + \frac{1}{36} = \frac{4+3+2}{72} = \frac{9}{72} = \frac{1}{8}$

 \therefore Work done by A, B and C in one day $=\frac{1}{16}$

So, A, B and C working together will take 16 days to complete the work.

Answer:

(A+B) can complete the work in 12 days.

(B+C) can complete the work in 15 days.

(C+A) can complete the work in 20 days.

(A+B)'s 1 day work = $\frac{1}{12}$

(B+C)'s 1 day work $=\frac{1}{15}$

(C+A)'s 1 day work $=\frac{1}{20}$

2(A+B+C)'s 1 day work $=\frac{1}{12}+\frac{1}{15}+\frac{1}{20}=\frac{5+4+3}{60}=\frac{12}{60}=\frac{1}{5}$

(A+B+C)'s 1 day work $=\frac{1}{10}$

A's 1 day work = {(A+B+C)'s 1 day work} - {(B+C)'s 1 day work} = $\frac{1}{10}$ - $\frac{1}{15} = \frac{3-2}{30} = \frac{1}{30}$

A will take 30 days to complete the work, if he works alone.

Q14.

Answer:

A can fill a tank in 10 hours.

B can fill a tank in 15 hours.

Pipe A fills $\frac{1}{10}$ of the tank in one hour.

Pipe B fills $\frac{1}{15}$ of the tank in one hour.

Part of tank filled by pipes A and B together $=\frac{1}{10}+\frac{1}{15}=\frac{3+2}{30}=\frac{5}{30}=\frac{1}{6}$

Thus, pipes A and B require 6 hours to fill the tank.

Q15.

Answer:

Pipe A can fill a tank in 5 hours.

Pipe B can empty a full tank in 6 hours.

Pipe A fills $\frac{1}{5}$ of the tank in one hour.

Pipe B empties $\frac{1}{6}$ of the tank in one hour.

Part of the tank filled in one hour using both pipes A and B $= \frac{1}{5} - \frac{1}{6} = \frac{6-5}{30} = \frac{1}{30}$

It takes $\frac{30}{1}$ or 30 hours to fill the tank completely.

Q16.

Answer:

Time taken by tap A to fill the tank = 6 hours

Time taken by tap B to fill the tank = 8 hours

Time taken by tap C to fill the tank = 12 hours

A fills $\frac{1}{6}$ of the tank in one hour.

B fills $\frac{1}{8}$ of the tank in one hour.

C fills $\frac{1}{12}$ of the tank in one hour.

Part of the tank filled in one hour using all the three pipes $=\frac{1}{6}+\frac{1}{8}+\frac{1}{12}=\frac{4+3+2}{24}=\frac{9}{24}$

Time taken by A, B and C together to fill the tank $=\frac{24}{9}=\frac{8}{3}=2\frac{2}{3}$ hours

Q17.

Answer:

Inlet A can fill the cistern in 12 minutes.

Inlet B can fill the cistern in 15 minutes.

Outlet C empties the filled cistern in 10 minutes.

Part of the cistern filled by inlet A in one minute $=\frac{1}{12}$

Part of the cistern filled by inlet B in one minute $=\frac{1}{15}$

Part of the cistern emptied by outlet C in one minute $= -\frac{1}{10}$

(water flows out from C and empties the cistern)

Part of the cistern filled in one minute with A, B and C working together $=\frac{1}{12}+\frac{1}{15}-\frac{1}{10}$ $=\frac{5+4-6}{60}=\frac{3}{60}=\frac{1}{20}$

The time required to fill the cistern with all inlets, A, B and C, open is 20 minutes

Q18.

Answer:

A pipe can fill a cistern in 9 hours.

Part of the cistern filled by the pipe in one hour $=\frac{1}{9}$

Let the leak empty the cistern in x hours.

Part of the cistern emptied by the leak in one hour $= -\frac{1}{x}$

Considering the leak, the tank is filled in 10 hours.

Part of the tank filled in one hour $=\frac{1}{10}$

Therefore.

$$\frac{1}{9} - \frac{1}{x} = \frac{1}{10}$$
 or, $\frac{1}{x} = \frac{1}{9} - \frac{1}{10} = \frac{10-9}{90} = \frac{1}{90} x = 90$

The leak will empty the filled cistern in 90 hours.

Q19.

Answer:

Pipe A can fill a cistern in 6 hours.

Pipe B can fill a cistern in 8 hours.

Part of the cistern filled by pipe A in one hour $=\frac{1}{6}$

Part of the cistern filled by pipe B in one hour $=\frac{1}{8}$

Part of the cistern filled by pipes A and B in one hour $=\frac{1}{6}+\frac{1}{8}=\frac{4+3}{24}=\frac{7}{24}$

Part of the cistern filled by pipes A and B in 2 hours $=\frac{7}{24}\times 2=\frac{7}{12}$

Part of the tank empty after 2 hours $= 1 - \frac{7}{12} = \frac{5}{12}$

Time taken by pipe B to fill the remaining tank = $\frac{5}{12} \div \frac{1}{8} = \frac{5}{12} \times 8 = \frac{10}{3} = 3\frac{1}{3}$ hours