# Rational Numbers Ex 1C

01

#### Answer

1. 
$$\frac{-2}{5} + \frac{4}{5} = \frac{-2+4}{5} = \frac{2}{5}$$

2. 
$$\frac{-6}{11} + \frac{-4}{11} = \frac{-6 + (-4)}{11} = \frac{-6 - 4}{11} = \frac{-10}{11}$$

3. 
$$\frac{-11}{8} + \frac{5}{8} = \frac{-11+5}{8} = \frac{-6}{8} = \frac{-3\times2}{4\times2} = \frac{-3}{4}$$

4. 
$$\frac{-7}{3} + \frac{1}{3} = \frac{-7+1}{3} = \frac{-6}{3} = \frac{-3 \times 2}{3} = -2$$

5. 
$$\frac{5}{6} + \frac{-1}{6} = \frac{5 + (-1)}{6} = \frac{4}{6} = \frac{2 \times 2}{3 \times 2} = \frac{2}{3}$$

6. 
$$\frac{-17}{15} + \frac{-1}{15} = \frac{-17 + (-1)}{15} = \frac{-17 - 1}{15} = \frac{-18}{15} = \frac{-6 \times 3}{5 \times 3} = \frac{-6}{5}$$

Q2.

1. The denominators of the given rational numbers are 4 and 5.

LCM of 4 and 5 is 20.

Now.

$$\frac{3}{4} = \frac{3 \times 5}{4 \times 5} = \frac{15}{20}$$
 and  $\frac{-3}{5} = \frac{-3 \times 4}{5 \times 4} = \frac{-12}{20}$ 

$$\therefore \frac{3}{4} + \frac{-3}{5} = \frac{15}{20} + \frac{-12}{20} = \frac{15 + (-12)}{20} = \frac{15 - 12}{20} = \frac{3}{20}$$

2. The denominators of the given rational numbers are 8 and 12.

LCM of 8 and 12 is 24.

Now.

$$\frac{5}{8} = \frac{5 \times 3}{8 \times 3} = \frac{15}{24}$$
 and  $\frac{-7}{12} = \frac{-7 \times 2}{12 \times 2} = \frac{-14}{24}$ 

$$\because \frac{5}{8} + \frac{-7}{12} = \frac{15}{24} + \frac{-14}{24} = \frac{15 + (-14)}{24} = \frac{15 - 14}{24} = \frac{1}{24}$$

3. The denominators of the given rational numbers are 9 and 6.

LCM of 9 and 6 is 18.

Now.

$$\frac{-8}{9} = \frac{-8 \times 2}{9 \times 2} = \frac{-16}{18}$$
 and  $\frac{11}{6} = \frac{11 \times 3}{6 \times 3} = \frac{33}{18}$ 

$$\div \frac{-8}{9} + \frac{11}{6} = \frac{-16}{18} + \frac{33}{18} = \frac{-16+33}{18} = \frac{-16+33}{18} = \frac{17}{18}$$

4. The denominators of the given rational numbers are 16 and 24.

LCM of 16 and 24 is 48.

Now

$$\frac{-5}{16} = \frac{-5 \times 3}{16 \times 3} = \frac{-15}{48}$$
 and  $\frac{7}{24} = \frac{7 \times 2}{24 \times 2} = \frac{14}{48}$ 

$$\therefore \frac{-5}{16} + \frac{7}{24} = \frac{-15}{48} + \frac{14}{48} = \frac{-15+14}{48} = \frac{-1}{48}$$

5. We will first write each of the given numbers with positive denominators.

$$\frac{7}{-18} = \frac{7 \times (-1)}{-18 \times (-1)} = \frac{-7}{18}$$

The denominators of the given rational numbers are 18 and 27.

LCM of 18 and 27 is 54.

Now,

$$\frac{-7}{18} = \frac{-7 \times 3}{18 \times 3} = \frac{-21}{54}$$
 and  $\frac{8}{27} = \frac{8 \times 2}{27 \times 2} = \frac{16}{54}$ 

$$\therefore \frac{7}{-18} + \frac{8}{27} = \frac{-21}{54} + \frac{16}{54} = \frac{-21+16}{54} = \frac{-5}{54}$$

6. We will first write each of the given numbers with positive denominators.

$$\frac{1}{-12} = \frac{1 \times (-1)}{-12 \times (-1)} = \frac{-1}{12} \text{ and } \frac{2}{-15} = \frac{2 \times (-1)}{-15 \times (-1)} = \frac{-2}{15}$$

The denominators of the given rational numbers are 12 and 15.

LCM of 12 and 15 is 60.

Now

$$\frac{-1}{12} = \frac{-1 \times 5}{12 \times 5} = \frac{-5}{60}$$
 and  $\frac{-2}{15} = \frac{-2 \times 4}{15 \times 4} = \frac{-8}{60}$ 

$$\therefore \frac{1}{-12} + \frac{2}{-15} = \frac{-5}{60} + \frac{-8}{60} = \frac{-5 + (-8)}{60} = \frac{-5 - 8}{60} = \frac{-13}{60}$$

7. We can write -1 as  $\frac{-1}{1}$ .

The denominators of the given rational numbers are 1 and 4.

LCM of 1 and 4 is 4.

Now

$$\frac{-1}{1} = \frac{-1 \times 4}{1 \times 4} = \frac{-4}{4}$$
 and  $\frac{3}{4} = \frac{3 \times 1}{4 \times 1} = \frac{3}{4}$ 

8. We can write 2 as  $\frac{2}{1}$ .

The denominators of the given rational numbers are 1 and 4.

LCM of 1 and 4 is 4.

Now,

$$\frac{2}{1} = \frac{2 \times 4}{1 \times 4} = \frac{8}{4}$$
 and  $\frac{-5}{4} = \frac{-5 \times 1}{4 \times 1} = \frac{-5}{4}$ 

$$\therefore 2 + \frac{(-5)}{4} = \frac{8}{4} + \frac{(-5)}{4} = \frac{8 + (-5)}{4} = \frac{8 - 5}{4} = \frac{3}{4}$$

9. We can write 0 as  $\frac{0}{1}$ .

The denominators of the given rational numbers are 1 and 5.

LCM of 1 and 5 is 5, that is,  $(1 \times 5)$ .

Now,

$$\frac{0}{1} = \frac{0 \times 5}{1 \times 5} = \frac{0}{5} = 0$$
 and  $\frac{-2}{5} = \frac{-2 \times 1}{5 \times 1} = \frac{-2}{5}$ 

$$\therefore 0 + \frac{(-2)}{5} = \frac{0}{5} + \frac{(-2)}{5} = \frac{0 + (-2)}{5} = \frac{0 - 2}{5} = \frac{-2}{5}$$

Q3.

1. LHS = 
$$\frac{-12}{5} + \frac{2}{7}$$

LCM of 5 and 7 is 35.

$$\frac{-12\times7}{5\times7} + \frac{2\times5}{7\times5} = \frac{-84}{35} + \frac{10}{35} = \frac{-84+10}{35} = \frac{-74}{35}$$

RHS = 
$$\frac{2}{7} + \frac{-12}{5}$$

LCM of 5 and 7 is 35.

$$\frac{2\times5}{7\times5} + \frac{-12\times7}{5\times7} = \frac{10}{35} + \frac{-84}{35} = \frac{10-84}{35} = \frac{-74}{35}$$

$$\therefore \frac{-12}{5} + \frac{2}{7} = \frac{2}{7} + \frac{-12}{5}$$

2. LHS = 
$$\frac{-5}{8} + \frac{-9}{13}$$

LCM of 8 and 13 is 104.

$$\frac{-5 \times 13}{8 \times 13} + \frac{-9 \times 8}{13 \times 8} = \frac{-65}{104} + \frac{-72}{104} = \frac{-65 + (-72)}{104} = \frac{-65 - 72}{104} = \frac{-137}{104}$$

RHS = 
$$\frac{-9}{13} + \frac{-5}{8}$$

LCM of 13 and 8 is 104.

$$\frac{-9 \times 8}{13 \times 8} \ + \frac{-5 \times 13}{8 \times 13} = \frac{-72}{104} + \frac{-65}{104} = \frac{-72 - 65}{104} = \frac{-137}{104}$$

$$\therefore \frac{-5}{8} + \frac{-9}{13} = \frac{-9}{13} + \frac{-5}{8}$$

3. LHS = 
$$\frac{3}{1} + \frac{-7}{12}$$

LCM of 1 and 12 is 12.

$$\frac{3 \times 12}{1 \times 12} + \frac{-7 \times 1}{12 \times 1} = \frac{36}{12} + \frac{-7}{12} = \frac{36 + (-7)}{12} = \frac{36 - 7}{12} = \frac{29}{12}$$

RHS = 
$$\frac{-7}{12} + \frac{3}{1}$$

LCM of 12 and 1 is 12.

$$\frac{-7 \times 1}{12 \times 1} + \frac{3 \times 12}{1 \times 12} = \frac{-7}{12} + \frac{36}{12} = \frac{-7 + 36}{12} = \frac{29}{12}$$

$$\therefore 3 + \frac{-7}{12} = \frac{-7}{12} + 3$$

4. LHS = 
$$\frac{2}{-7} + \frac{12}{-35}$$

We will write the given numbers with positive denominators.

$$\frac{2}{-7} = \frac{2 \times (-1)}{-7 \times (-1)} = \frac{-2}{7}$$
 and  $\frac{12}{-35} = \frac{12 \times (-1)}{-35 \times (-1)} = \frac{-12}{35}$ 

LCM of 7 and 35 is 35.

$$\frac{-2 \times 5}{7 \times 5} + \frac{-12 \times 1}{35 \times 1} = \frac{-10}{35} + \frac{-12}{35} = \frac{-10 + (-12)}{35} = \frac{-10 - 12}{35} = \frac{-22}{35}$$

RHS = 
$$\frac{12}{-35} + \frac{2}{-7}$$

We will write the given numbers with positive denominators

$$\frac{12}{-35} = \frac{12 \times (-1)}{-35 \times (-1)} = \frac{-12}{35}$$
 and  $\frac{2}{-7} = \frac{2 \times (-1)}{-7 \times (-1)} = \frac{-2}{7}$ 

LCM of 35 and 7 is 35.

$$\frac{-2 \times 5}{7 \times 5} + \frac{-12 \times 1}{35 \times 1} = \frac{-10}{35} + \frac{-12}{35} = \frac{-10 + (-12)}{35} = \frac{-10 - 12}{35} = \frac{-22}{35}$$

$$\therefore \frac{2}{-7} + \frac{12}{-35} = \frac{12}{-35} + \frac{2}{-7}$$

Q4.

## Answer:

1. 
LHS = 
$$\left\{ \left( \frac{3}{4} + \frac{-2}{5} \right) + \frac{-7}{10} \right\}$$

$$\left\{ \left( \frac{15-8}{20} \right) + \frac{-7}{10} \right\} = \left( \frac{7}{20} + \frac{-7}{10} \right) = \left( \frac{7}{20} + \frac{-14}{20} \right) = \left( \frac{7+(-14)}{20} \right) = \frac{-7}{20}$$

$$\text{RHS} = \left\{ \frac{3}{4} + \left( \frac{-2}{5} + \frac{-7}{10} \right) \right\}$$

$$\left\{ \frac{3}{4} + \left( \frac{-4}{10} + \frac{-7}{10} \right) \right\} = \left\{ \frac{3}{4} + \left( \frac{-4-7}{10} \right) \right\} = \left\{ \frac{3}{4} + \left( \frac{-11}{10} \right) \right\} = \left( \frac{3}{4} + \frac{-11}{10} \right)$$

$$= \left( \frac{15}{20} + \frac{-22}{20} \right) = \left( \frac{15-22}{20} \right) = \frac{-7}{20}$$

$$\therefore \left( \frac{3}{4} + \frac{-2}{5} \right) + \frac{-7}{10} = \frac{3}{4} + \left( \frac{-2}{5} + \frac{-7}{10} \right)$$

2. LHS = 
$$\left\{ \left( \frac{-7}{11} + \frac{2}{-5} \right) + \frac{-13}{22} \right\}$$

We will first make the denominator positive

$$\begin{split} &\left\{ \left(\frac{-7}{11} + \frac{2 \times (-1)}{-5 \times (-1)}\right) + \frac{-13}{22} \right\} = \left\{ \left(\frac{-7}{11} + \frac{-2}{5}\right) + \frac{-13}{22} \right\} \\ &\left\{ \left(\frac{-7}{11} + \frac{-2}{5}\right) + \frac{-13}{22} \right\} = \left\{ \left(\frac{-35}{55} + \frac{-22}{55}\right) + \frac{-13}{22} \right\} = \left\{ \left(\frac{-35 - 22}{55}\right) + \frac{-13}{22} \right\} \\ &= \left(\frac{-57}{55} + \frac{-13}{22}\right) = \frac{-114}{110} + \frac{-65}{110} = \frac{-114 - 65}{110} = \frac{-179}{110} \end{split}$$
 
$$\mathsf{RHS} = \left\{ \frac{-7}{11} + \left(\frac{2}{-5} + \frac{-13}{22}\right) \right\}$$

We will first make the denominator positive.

$$\left\{ \frac{-7}{11} + \left( \frac{2 \times (-1)}{-5 \times (-1)} + \frac{-13}{22} \right) \right\} = \left\{ \frac{-7}{11} + \left( \frac{-2}{5} + \frac{-13}{22} \right) \right\} 
\left\{ \frac{-7}{11} + \left( \frac{-2}{5} + \frac{-13}{22} \right) \right\} = \left\{ \frac{-7}{11} + \left( \frac{-44}{110} + \frac{-65}{110} \right) \right\} = \left\{ \frac{-7}{11} + \left( \frac{-44 + (-65)}{110} \right) \right\} 
= \frac{-7}{11} + \frac{-109}{110} = \frac{-70}{110} + \frac{-109}{110} = \frac{-70 - 109}{110} = \frac{-179}{110} 
$$\therefore \left( \frac{-7}{11} + \frac{2}{-5} \right) + \frac{-13}{22} = \frac{-7}{11} + \left( \frac{2}{-5} + \frac{-13}{22} \right)$$$$

3. 
$$\begin{aligned} &\text{LHS} = -1 + \left(\frac{-2}{3} + \frac{-3}{4}\right) \\ &\left\{\frac{-1}{1} + \left(\frac{-2}{3} + \frac{-3}{4}\right)\right\} = \left\{\frac{-1}{1} + \left(\frac{-8}{12} + \frac{-9}{12}\right)\right\} = \left\{\frac{-1}{1} + \left(\frac{-8-9}{12}\right)\right\} \\ &= \left\{\frac{-1}{1} + \left(\frac{-17}{12}\right)\right\} = \left(\frac{-1}{1} + \frac{-17}{12}\right) = \left(\frac{-1 \times 12}{1 \times 12} + \frac{-17 \times 1}{12 \times 1}\right) = \left(\frac{-12 + \left(-17\right)}{12}\right) \\ &= \left(\frac{-12 - 17}{12}\right) = \frac{-29}{12} \\ &\text{RHS} = \left\{\left(-1 + \frac{-2}{3}\right) + \frac{-3}{4}\right\} \\ &\left\{\left(\frac{-1}{1} + \frac{-2}{3}\right) + \frac{-3}{4}\right\} = \left\{\left(\frac{-3}{3} + \frac{-2}{3}\right) + \frac{-3}{4}\right\} = \left\{\left(\frac{-3 - 2}{3}\right) + \frac{-3}{4}\right\} \\ &= \left\{\left(\frac{-5}{3}\right) + \frac{-3}{4}\right\} = \left(\frac{-5}{3} + \frac{-3}{4}\right) = \left(\frac{-20}{12} + \frac{-9}{12}\right) = \left(\frac{-20 - 9}{12}\right) = \frac{-29}{12} \\ &\therefore -1 + \left(\frac{-2}{3} + \frac{-3}{4}\right) = \left(-1 + \frac{-2}{3}\right) + \frac{-3}{4} \end{aligned}$$

Q5.

(i) Addition is commutative, that is, a+b=b+a.

Hence, the required solution is 
$$\left(\frac{-3}{17}\right) + \left(\frac{-12}{5}\right) = \left(\frac{-12}{5}\right) + \boxed{\left(\frac{-3}{7}\right)}$$

(ii) Addition is commutative, that is, a+b=b+a.

Hence, the required solution is  $-9 + \frac{-21}{8} = \frac{-21}{8} + \boxed{-9}$ 

(iii) Addition is associative, that is, (a+b)+c=a+(b+c).

Hence, the required solution is 
$$\left(\frac{-8}{13} + \frac{3}{7}\right) + \left(\frac{-13}{4}\right) = \left[\left(\frac{-8}{13}\right)\right] + \left[\frac{3}{7} + \left(\frac{-13}{4}\right)\right]$$

(iv) Addition is associative, that is, (a+b)+c=a+(b+c).

Hence, the required solution is 
$$-12+\left(\frac{7}{12}+\frac{-9}{11}\right)=\left(-12+\frac{7}{12}\right)+\frac{-9}{11}$$

(iv) Addition is associative, that is, (a+b)+c=a+(b+c)

Hence, the required solution is 
$$-12+\left(\frac{7}{12}+\frac{-9}{11}\right)=\left(-12+\frac{7}{12}\right)+\frac{-9}{11}$$

(v) Addition is associative, that is, (a+b)+c=a+(b+c)

Hence, the required solution is 
$$\frac{19}{-5} + \left(\frac{-3}{11} + \frac{-7}{8}\right) = \left\{\frac{19}{-5} + \left[\left(\frac{-3}{11}\right)\right]\right\} + \frac{-7}{8}$$

(vi) 0 is the additive identity, that is, 0+a=a.

Hence, the required solution is  $\frac{-16}{7} + \boxed{0} = \boxed{0} + \frac{-16}{7} = \frac{-16}{7}$ 

Q6.

## Answer

The additive inverse of  $\frac{a}{b}$  is  $\frac{-a}{b}$ . Therefore,  $\frac{a}{b}+\left(\frac{-a}{b}\right)=0$ 

- (i) Additive inverse of  $\frac{1}{3}\,is\,\frac{-1}{3}$  .
- (ii) Additive inverse of  $\frac{23}{9}$  is  $\frac{-23}{9}$  .
- (iii) Additive inverse of -18 is 18.
- (iv) Additive inverse of  $\frac{-17}{8}\,is\,\frac{17}{8}$  .
- (v) In the standard form, we write  $rac{15}{-4}\,\mathbf{as}\,rac{-15}{4}$  .

Hence, its additive inverse is  $\frac{15}{4}$ 

(vi) We can write:

$$\frac{-16}{-5} = \frac{-16 \times (-1)}{-5 \times (-1)} = \frac{16}{5}$$

Hence, its additive inverse is  $\frac{-16}{5}\,$ 

- (vii) Additive inverse of  $\frac{-3}{11}$  is  $\frac{3}{11}$  .
- (viii) Additive inverse of 0 is 0.
- (ix) In the standard form, we write  $\frac{19}{-6} \, as \, \frac{-19}{6}$  .

Hence, its additive inverse is  $\frac{19}{6}$ .

(x) We can write:

$$\frac{-8}{-7} = \frac{-8 \times (-1)}{-7 \times (-1)} = \frac{8}{7}$$

Hence, its additive inverse is  $\frac{-8}{7}$ 

Q7.

Δnswer

(i) 
$$\left(\frac{1}{3} - \frac{3}{4}\right) = \frac{1}{3} + \left(\text{Additive inverse of } \frac{3}{4}\right)$$

$$= \left(\frac{1}{3} + \frac{-3}{4}\right) = \left(\frac{4}{12} + \frac{-9}{12}\right) = \left(\frac{4-9}{12}\right) = \frac{-5}{12}$$

(ii) 
$$\left(\frac{1}{3} - \frac{-5}{6}\right) = \frac{1}{3} + \left(\text{Additive inverse of} \, \frac{-5}{6}\right)$$

= 
$$\left(\frac{1}{3} + \frac{5}{6}\right)$$
 (Because the additive inverse of  $\frac{-5}{6}$  is  $\frac{5}{6}$ )

$$=\left(\frac{2}{6} + \frac{5}{6}\right) = \left(\frac{2+5}{6}\right) = \frac{7}{6}$$

(iii) 
$$\left(\frac{-3}{5}-\frac{-8}{9}\right)=\frac{-3}{5}+\left(\text{Additive inverse of}\,\frac{-8}{9}\right)$$

= 
$$\left(\frac{-3}{5} + \frac{8}{9}\right)$$
 (Because the additive inverse of  $\frac{-8}{9}$  is  $\frac{8}{9}$ )

$$=\left(\frac{-27}{45} + \frac{40}{45}\right) = \left(\frac{-27+40}{45}\right) = \frac{13}{45}$$

(iV) 
$$\left(-1-\frac{-9}{7}\right)=-1+\left(\text{Additive inverse of}\,\frac{-9}{7}\right)$$

$$=\left(\frac{-1}{1}+\frac{9}{7}\right)$$
 (Because the additive inverse of  $\frac{-9}{7}$  is  $\frac{9}{7}$ )

$$=\left(\frac{-7}{7}+\frac{9}{7}\right)=\left(\frac{-7+9}{7}\right)=\frac{2}{7}$$

(v) 
$$\left(1 - \frac{-18}{11}\right) = 1 + \left(\text{Additive inverse of } \frac{-18}{11}\right)$$

$$=$$
  $\left(\frac{1}{1} + \frac{18}{11}\right)$  (Because the additive inverse of  $\frac{-18}{11}$  is  $\frac{18}{11}$ )

$$= \left(\frac{11}{11} + \frac{18}{11}\right) = \left(\frac{11+18}{11}\right) = \frac{29}{11}$$

$$(\text{vi}) \left(0-\frac{-13}{9}\right) = 0 + \left(\text{Additive inverse of} \frac{-13}{9}\right)$$

$$= \left(0+\frac{13}{9}\right) \text{ (Because the additive inverse of } \frac{-13}{9} \text{ is } \frac{13}{9}\text{ )}$$

$$= \frac{13}{9}$$

$$(\text{vii}) \left(\frac{-6}{5}-\frac{-32}{13}\right) = \frac{-6}{5} + \left(\text{Additive inverse of } \frac{-32}{13}\right)$$

$$= \left(\frac{-6}{5}+\frac{32}{13}\right) \text{ (Because the additive inverse of } \frac{-32}{13} \text{ is } \frac{32}{13}\text{ )}$$

$$= \left(\frac{-78}{65}+\frac{160}{65}\right) = \left(\frac{-78+160}{65}\right) = \frac{82}{65}$$

$$(\text{vi}) \left(0-\frac{-13}{9}\right) = 0 + \left(\text{Additive inverse of } \frac{-13}{9}\right)$$

$$= \left(0+\frac{13}{9}\right) \text{ (Because the additive inverse of } \frac{-13}{9} \text{ is } \frac{13}{9}\text{ )}$$

$$= \frac{13}{9}$$

Q8.

Answer:

(i) 
$$\left(\frac{4}{3} + \frac{-2}{3}\right) + \left(\frac{3}{5} + \frac{-11}{5}\right)$$

$$= \left(\frac{4-2}{3}\right) + \left(\frac{3-11}{5}\right)$$

$$= \left(\frac{2}{3} + \frac{-8}{5}\right)$$

$$= \left(\frac{10}{15} + \frac{-24}{15}\right)$$

$$= \left(\frac{10-24}{15}\right)$$

$$= \frac{-14}{15}$$

$$= \left(\frac{-16-11}{6}\right) + \left(\frac{-2+3}{8}\right)$$

$$= \left(\frac{-27}{6} + \frac{1}{8}\right)$$

$$= \left(\frac{-108}{24} + \frac{3}{24}\right)$$

$$= \frac{-105}{24}$$

$$= \frac{35}{8}$$

Q9.

Answer:

Let the other number be x. Now.

$$\Rightarrow x + \frac{-14}{5} = -2$$

$$\Rightarrow x - \frac{14}{5} = -2$$

$$\Rightarrow x = -2 + \frac{14}{5}$$

$$\Rightarrow x = \frac{(-2) \times 5 + 14}{5}$$

$$\Rightarrow x = \frac{-10 + 14}{5}$$

$$\Rightarrow x = \frac{4}{5}$$

Q10.

Let the other number be x. Now,

$$x+\tfrac{5}{6}=\tfrac{-1}{2}$$

$$\Rightarrow x = -rac{1}{2} - rac{5}{6}$$

$$\Rightarrow x = \frac{3-5}{6}$$

$$\Rightarrow x = rac{-8}{6}$$

$$\Rightarrow x = rac{-4}{3}$$

# Q11.

## Answer:

Let the required number be x.

$$\frac{-5}{8} + x = \frac{-3}{2}$$

$$\Rightarrow \frac{-5}{8} + x + \frac{5}{8} = \frac{-3}{2} + \frac{5}{8}$$
 (Adding  $\frac{5}{8}$  to both the sides)

$$\Rightarrow x = \left(\frac{-3}{2} + \frac{5}{8}\right)$$

$$\Rightarrow x = \left(\frac{-12}{8} + \frac{5}{8}\right)$$
$$\Rightarrow x = \left(\frac{-12+5}{8}\right)$$

$$\Rightarrow x = \left(\frac{-12+5}{8}\right)$$

$$\Rightarrow x = \frac{-7}{8}$$

Hence, the required number is  $\frac{-7}{8}$ 

# Q12.

## Answer:

Let the required number be x.

Now,

$$-1+x=rac{5}{7}$$
  $\Rightarrow -1+x+1=rac{5}{7}+1$  (Adding 1 to both the sides)

$$\Rightarrow x = \left(\frac{5+7}{7}\right)$$
  
 $\Rightarrow x = \frac{12}{7}$ 

Hence, the required number is  $\frac{12}{7}$ 

Q13.

Let the required number be x.

Now.

$$\begin{array}{l} \frac{-2}{3}-x=\frac{-1}{6}\\ \Rightarrow \frac{-2}{3}-x+x=\frac{-1}{6}+x \qquad \qquad \text{(Adding $x$ to both the sides)}\\ \Rightarrow \frac{-2}{3}=\frac{-1}{6}+x\\ \Rightarrow \frac{-2}{3}+\frac{1}{6}=\frac{-1}{6}+x+\frac{1}{6} \qquad \text{(Adding $\frac{1}{6}$ to both the sides)}\\ \Rightarrow \left(\frac{-4}{6}+\frac{1}{6}\right)=x\\ \Rightarrow \left(\frac{-4+1}{6}\right)=x\\ \Rightarrow \frac{-3}{6}=x\\ \Rightarrow \frac{-1\times3}{2\times3}=x\\ \Rightarrow \frac{-1}{2}=x \end{array}$$

Hence, the required number is  $\frac{-1}{2}$ .

## Q14.

## Answer:

1. Zero is a rational number that is its own additive inverse.

## 2. Yes

Consider ab-cd (with a, b, c and d as integers), where b and d are not equal to 0.

ab-cd implies adbd-bcbd implies ad-bcbd

Since ad, bc and bd are integers since integers are closed under the operation of multiplication and ad-bc is an integer since integers are closed under the operation of subtraction, then ad-bcbd

since it is in the form of one integer divided by another and the denominator is not equal to  $\mathbf{0}$ 

Since, b and d were not equal to 0

Thus, ab-cd is a rational number.

- 3. Yes, rational numbers are commutative under addition. If *a* and *b* are rational numbers, then the commutative law under addition is a+b=b+a.
- 4. Yes, rational numbers are associative under addition. If a, b and c are rational numbers, then the associative law under addition is a+(b+c)=(a+b)+c.
- 5. No, subtraction is not commutative on rational numbers. In general, for any two rational numbers,  $(a-b) \neq (b-a)$ .
- 6. Rational numbers are not associative under subtraction. Therefore,

$$a-(b-c)\neq (a-b)-c$$

7. Negative of a negative rational number is a positive rational number.