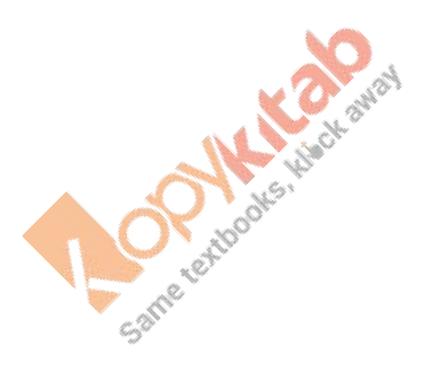
Ch 5 – Algebra of Matrices

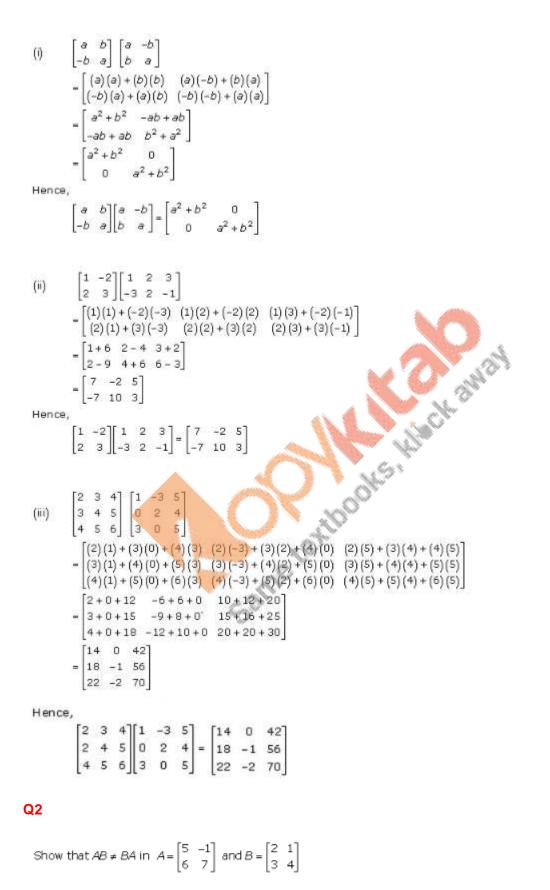
Exercise 5.3

Q1

Compute the indicated products:

(i)
$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix} \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ -3 & 2 & -1 \end{bmatrix}$
(iii) $\begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5 \end{bmatrix}$





Given, $A = \begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$ $AB = \begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$ $= \begin{bmatrix} 10 - 3 & 5 - 4 \\ 12 + 21 & 6 + 28 \end{bmatrix}$ $AB = \begin{bmatrix} 7 & 1 \\ 33 & 34 \end{bmatrix}$ ----(i) $BA = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix}$ $= \begin{bmatrix} 10+6 & -2+7 \\ 15+24 & -3+28 \end{bmatrix}$ $BA = \begin{bmatrix} 16 & 5 \\ 39 & 25 \end{bmatrix}$ ----(ii) From equation (i) and (ii), we get AB ≠ BA

Q3

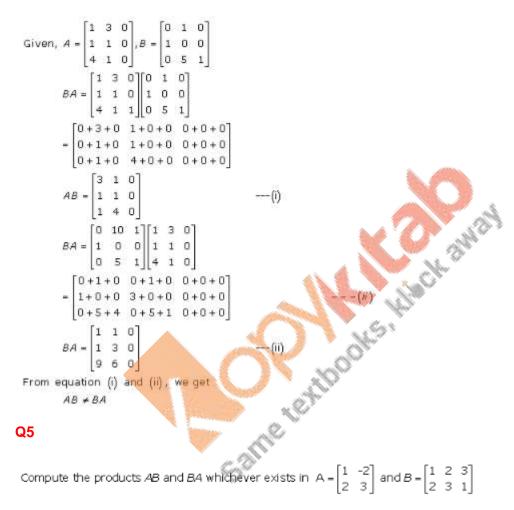
Show that
$$AB \neq BA$$
 in $A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$

Solution

Given, $A = \begin{bmatrix} -1 & -1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$ $BA = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$ $= \begin{bmatrix} -1+0+0 & -2+1+0 & -3+0+0 \\ +0+01 & 0-1+1 & 0+0+0 \\ 2+0+4 & 4+3+4 & 6+0+0 \end{bmatrix}$ $AB = \begin{bmatrix} -1 & -1 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$ ---(i) [1 2 3][-1 1 0] BA = 0 1 0 0 -1 1 1 1 0 2 3 4 $= \begin{bmatrix} -1+0+6 & 1-2+9 & 0+2+12 \\ 0+0+0 & 0-1+0 & 0+1+0 \\ -1+0+0 & 1-1+0 & 0+1+0 \end{bmatrix}$ [5 8 14] BA = 0 -1 1 ----(ii) -1 0 1 From (i) and (ii), AB ≠ BC

Show that
$$AB \neq BA$$
 in $A = \begin{bmatrix} 1 & 3 & 0 \\ 1 & 1 & 0 \\ 4 & 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 5 & 1 \end{bmatrix}$

Solution



Ch 5 – Algebra of Matrices

RD Sharma Solutions Class 12

$$A = \begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$$

Since order of A is 2 × 2 and order of B is 2 × 3, So AB is possible but BA is not possible order of AB is 2×3 .

 $AB = \begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ $= \begin{bmatrix} (1)(1) + (-2)(2) & (1)(2) + (-2)(3) & (1)(3) + (-2)(1) \\ (2)(1) + (3)(2) & (2)(2) + (3)(3) & (2)(3) + (3)(1) \end{bmatrix}$ [1-4 2-6 3-2] = 2+6 4+9 6+3 [-3 -4 1] = AB 8 13 9 Hence,

AB =

[-3 -4 1 [8 13 9] BA does not exits

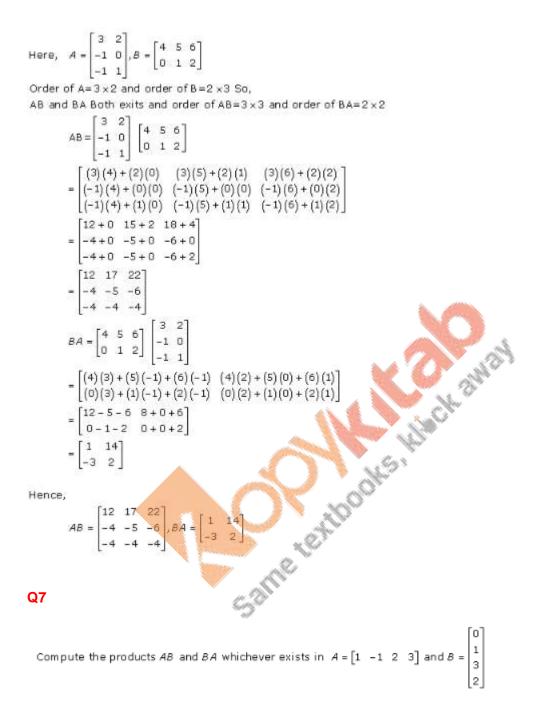
Q6

Same entroptes Compute the products AB and BA whichever exists in A -1 0

3

and B - 4

Ch 5 – Algebra of Matrices



Ch 5 – Algebra of Matrices

Here,

 $A = \begin{bmatrix} 1 & -1 & 2 & 3 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ Order of A = 1 × 4 and order of B=4 × 1 So, AB and BA both exist and order of AB = 1 × 1 and order of BA= 4 × 4, So 01 $AB = \begin{bmatrix} 1 & -1 & 2 & 3 \end{bmatrix} \begin{vmatrix} 1 \\ 3 \end{vmatrix}$ 2 $= \left[(1)(0) + (-1)(1) + (2)(3) + (3)(2) \right]$ = [0 - 1 + 6 + 6]AB = [11] 0 $BA = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 & 3 \end{bmatrix}$ (0)(1) (0)(-1) (0)(2) (0)(3)(1)(1)(1)(-1)(1)(2)(1)(3)BA = (3)(1) (3)(-1) (3)(2) (3)(3) (2)(1) (2)(-1) (3)(2) (2)(3)0 0 0 0 1 -1 2 3 BA =~3 6 9 з 2 -2 4 6 Hence, AB = [11] 1 -1 2 3 3 -3 6 9 BA =-2 4 6 **Q8**

Compute the products AB and BA whichever exists in $\begin{bmatrix} a, b \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} + \begin{bmatrix} a, b, c, d \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$

Ch 5 – Algebra of Matrices

$$\begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} + \begin{bmatrix} a & b & c & d \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$
$$= \begin{bmatrix} ac + bd \end{bmatrix} + \begin{bmatrix} a^2 + b^2 + c^2 + d^2 \end{bmatrix}$$
$$= \begin{bmatrix} ac + bd = a^2 + b^2 + c^2 + d^2 \end{bmatrix}$$
Hence,

$$\begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} + \begin{bmatrix} a & b & c & d \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$
$$= \begin{bmatrix} ac + bd + a^2 + b^2 + c^2 + d^2 \end{bmatrix}$$

Q9

Show that
$$AB \neq BA$$
 in $A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & -1 & -1 \\ 3 & 0 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 3 & -1 \\ -1 & 2 & -1 \\ -6 & 9 & -4 \end{bmatrix}$

Solution

Show that
$$AB \neq BA$$
 in $A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & -1 & -1 \\ 3 & 0 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 3 & -1 \\ -1 & 2 & -1 \\ -6 & 9 & -4 \end{bmatrix}$
Solution

$$A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & -1 & -1 \\ 3 & 0 & -1 \end{bmatrix}, B = \begin{bmatrix} -2 & 3 & -1 \\ -1 & 2 & -1 \\ -6 & 2 & -4 \end{bmatrix}$$

$$AB = \begin{bmatrix} 1 & 3 & -1 \\ 2 & -1 & -1 \\ -6 & 9 & -4 \end{bmatrix} = \begin{bmatrix} -2 & 3 & -1 \\ -1 & 2 & -1 \\ -6 & 9 & -4 \end{bmatrix}$$

$$AB = \begin{bmatrix} 1 & 3 & -1 \\ 2 & -1 & -1 \\ -6 & 9 & -4 \end{bmatrix} = \begin{bmatrix} -2 & 3 & -1 \\ -1 & 2 & -1 \\ -6 & 9 & -4 \end{bmatrix}$$

$$AB = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -2 & 3 & -1 \\ -1 & 2 & -1 \\ -6 & 9 & -4 \end{bmatrix}$$

$$AB = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -2 & 3 & -1 \\ -4 & 1 + 6 & 6 & 2 - 9 \\ -6 & 0 + 6 & 9 & 0 - 9 & -3 + 0 + 4 \end{bmatrix}$$

$$BA = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 0 & -1 \\ -1 & 2 & -1 \\ -6 & 9 & -4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & -1 & -1 \\ 3 & 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} -2 + 6 - 3 & -6 - 3 + 0 & 2 - 3 + 1 \\ -1 + 4 - 3 & -3 - 2 + 0 & 1 - 2 + 1 \\ -6 + 18 - 12 & -18 - 9 + 0 & 6 - 9 + 4 \end{bmatrix}$$

$$BA = \begin{bmatrix} 1 & -9 & 0 \\ 0 & -5 & 0 \\ 0 & -27 & 1 \end{bmatrix} = --(ii)$$
From equation(i) and (ii),

$$AB \neq BA$$

Q10

Show that
$$AB \neq BA$$
 in $A = \begin{bmatrix} 10 & -4 & -1 \\ -11 & 5 & 0 \\ 9 & -5 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 2 \end{bmatrix}$

Ch 5 – Algebra of Matrices

Solution

.

$$A = \begin{bmatrix} 10 & -4 & -1 \\ -11 & 5 & 0 \\ 9 & -5 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 2 \end{bmatrix}$$

$$AB = \begin{bmatrix} 10 & -4 & -1 \\ -11 & 5 & 0 \\ 9 & -5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 10 - 12 - 1 & 20 - 16 - 3 & 10 - 8 - 2 \\ -11 + 15 + 0 & -22 + 20 + 0 & -11 + 10 + 0 \\ 9 - 15 + 1 & 18 - 20 + 3 & 9 - 10 + 2 \end{bmatrix}$$

$$AB = \begin{bmatrix} -3 & 1 & 0 \\ 4 & -2 & -1 \\ -5 & 1 & 1 \end{bmatrix} - ---(i)$$

$$BA = \begin{bmatrix} 13 & 2 & 1 \\ 34 & 2 \\ 13 & 2 & 2 \\ 1 & 32 & 2 \end{bmatrix} \begin{bmatrix} 10 & -4 & -1 \\ -11 & 5 & 0 \\ 9 & -5 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 10 - 22 + 9 & -4 + 10 - 5 & -9 + 0 + 1 \\ 30 - 44 + 10 & -12 + 20 - 10 & -3 + 0 + 2 \\ 10 - 33 + 18 & -4 + 15 - 10 & -1 + 0 + 2 \end{bmatrix}$$

$$BA = \begin{bmatrix} -3 & 1 & 0 \\ 4 & -2 & -1 \\ -5 & 1 & 1 \end{bmatrix} - --(i)$$
From equation (i) and (i)
$$AB * BA$$
Q11
Evaluate $\left(\begin{bmatrix} 1 & 3 \\ -1 & -4 \end{bmatrix} + \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \right) \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$

$$\begin{pmatrix} \begin{bmatrix} 1 & 3 \\ -1 & -4 \end{bmatrix} + \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \\ = \begin{pmatrix} \begin{bmatrix} 1+3 & 3-2 \\ -1-1 & -4+1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \\ = \begin{bmatrix} 4 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \\ = \begin{bmatrix} 4+2 & 12+4 & 20+6 \\ -2-6 & -6-12 & -10-18 \end{bmatrix} \\ = \begin{bmatrix} 6 & 16 & 26 \\ -8 & -18 & -28 \end{bmatrix} \\ \text{Hence,} \\ \begin{pmatrix} \begin{bmatrix} 1 & 3 \\ -1 & -4 \end{bmatrix} + \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} = \begin{bmatrix} 6 & 16 & 26 \\ -8 & -18 & -28 \end{bmatrix}$$

Ch 5 – Algebra of Matrices

			1	0	2]	[2]
Evaluate [1	2	31]	2	0	1	4
Evaluate [1			0	1	2	[6]

Solution

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$$
$$= \begin{bmatrix} 1+4+0 & 0+0+3 & 2+0+6 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 3 & 10 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$$
$$= \begin{bmatrix} 10+12+60 \end{bmatrix}$$
$$= \begin{bmatrix} 82 \end{bmatrix}$$
Hence,
$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 82 \end{bmatrix}$$

Q13

Evaluate	1 0 2	-1 2 3	$ \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \end{bmatrix} $	
----------	-------------	--------------	---	--

$$= \begin{bmatrix} 10 + 12 + 60 \\ = \begin{bmatrix} 92 \end{bmatrix}$$

Hence,

$$\begin{bmatrix} 1 & 2 & 3 \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 92 \end{bmatrix}$$

Evaluate $\begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 2 & 3 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \end{bmatrix}$
Solution

$$\begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 2 & 3 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 2 & 3 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 2 & 2 \\ 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 & 2 \\ 1 & 0 & 2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 2 & 3 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 & -1 & 2 & -2 \\ 2 & -1 & 0 & -0 & 1 & -2 \end{pmatrix}$$

$$= \begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 2 & 3 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & -0 & 0 & -1 & 2 & -2 \\ 2 & -1 & 0 & -0 & 1 & -2 \end{pmatrix}$$

$$= \begin{bmatrix} 0 & -1 & 1 \\ 0 & 2 & 3 \\ 2 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 & 1 \\ 0 & -2 \\ 5 & -2 & -3 \end{bmatrix}$$

Hence,

$$\begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 2 & 3 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 1 \\ 0 & 2 & 0 & -2 \\ 5 & -2 & -3 \end{bmatrix}$$

If
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ and $C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$,
then show that $A^2 = B^2 = C^2 = I_2$.

Solution

Given,
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, C \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

 $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 1 + 0 & 0 + 0 \\ 0 + 0 & 0 + 1 \end{bmatrix}$
 $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $A^2 = I_2$ ----(i)
 $B^2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
 $= \begin{bmatrix} 1 + 0 & 0 + 0 \\ 0 + 0 & 0 + 1 \end{bmatrix}$
 $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $B^2 = I_2$ ----(ii)
 $C^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
 $= \begin{bmatrix} 0 + 1 & 0 + 0 \\ 0 + 0 & 1 + 0 \end{bmatrix}$
 $C^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $C^2 = I_2$ ----(ii)
 $C^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $C^2 = I_2$ ----(ii)
 $C^2 = I_2$ ----(ii)
 $C^2 = I_2$ ----(ii)

Q15

If
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 4 \\ -1 & 7 \end{bmatrix}$, find $3A^2 - 2B + I$

 $A = \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 4 \\ -1 & 7 \end{bmatrix}$ Given, $3A^2 - 2B + I$ $= 3 \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} - 2 \begin{bmatrix} 0 & 4 \\ -1 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $= 3 \begin{bmatrix} 4 - 3 & -2 - 2 \\ 6 + 6 & -3 + 4 \end{bmatrix} - \begin{bmatrix} 0 & 8 \\ -2 & 14 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $= 3 \begin{bmatrix} 1 & -4 \\ 12 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 8 \\ -2 & 14 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 3 & -12 \\ 36 & 3 \end{bmatrix} - \begin{bmatrix} 0 & 8 \\ -2 & 14 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 3 - 0 + 1 & -12 + 8 + 0 \\ 36 + 2 + 0 & 3 - 14 + 1 \end{bmatrix}$ = $\begin{bmatrix} 4 & -20 \\ 38 & -10 \end{bmatrix}$ Hence,

$$3A^2 - 2B + I = \begin{bmatrix} 4 & -20 \\ 38 & -10 \end{bmatrix}$$

Q16

If $A = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$, prove that (A - 2I)(A - 31) = 0

A= 4 2

Solution

Given,

$$\begin{bmatrix} -1 & -1 \\ (A - 2l)(A - 3l) \\ = \left(\begin{bmatrix} 4 & 2 \\ -1 & -1 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \left(\begin{bmatrix} 4 & 2 \\ -1 & -1 \end{bmatrix} - 3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \\ = \left(\begin{bmatrix} 4 & 2 \\ -1 & -1 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \right) \left(\begin{bmatrix} 4 & 2 \\ -1 & -1 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \right) \\ = \left(\begin{bmatrix} 4 - 2 & 2 - 0 \\ -1 - 0 & 1 - 2 \end{bmatrix} \right) \left(\begin{bmatrix} 4 - 3 & 2 - 0 \\ -1 - 0 & 1 - 3 \end{bmatrix} \right) \\ = \begin{bmatrix} 2 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix} \\ = \begin{bmatrix} 2 - 2 & 4 - 4 \\ -1 + 1 & -2 + 2 \end{bmatrix} \\ = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \\ = 0$$

Hence

(A-2I)(A-3I)=0

Q17

If
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, show that $A^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ and $A^3 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$

Ch 5 – Algebra of Matrices

Solution

Given,
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

 $A^2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 1+0 & 1+1 \\ 0+0 & 0+1 \end{bmatrix}$
 $A^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$
 $A^3 = A^2 \cdot A$
 $= \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 1+0 & 1+2 \\ 0+0 & 0+1 \end{bmatrix}$
 $A^3 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$
Hence,

 $A^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, A^3 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$

Q18

If
$$A = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix}$$
, show that $A^2 = O$

Solution

$$= \begin{bmatrix} 1+0 & 1+2\\ 0+0 & 0+1 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 1 & 3\\ 0 & 1 \end{bmatrix}$$
Hence,
$$A^{2} = \begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix}, A^{3} = \begin{bmatrix} 1 & 3\\ 0 & 1 \end{bmatrix}$$
Q18
If $A = \begin{bmatrix} ab & b^{2}\\ -a^{2} & -ab \end{bmatrix}$, show that $A^{2} = 0$
Solution
Given, $A = \begin{bmatrix} ab & b^{2}\\ -a^{2} & -ab \end{bmatrix} \begin{bmatrix} ab & b^{2}\\ -a^{2} & -ab \end{bmatrix}$

$$= \begin{bmatrix} a^{2}b^{2} - a^{2}b^{2} & ab^{3} - ab^{3}\\ -a^{3}b + a^{3}b & -a^{2}b^{2} + a^{2}b^{2} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0\\ 0 & 0\\ = 0 \end{bmatrix}$$
Hence,
$$A^{2} = 0$$

Q19

If $A = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$, find A^2

Ch 5 – Algebra of Matrices

 $A = \begin{bmatrix} \cos 2\theta & \sin 2\theta \end{bmatrix}$ Given, -sin28 cos28 $A^2 = A.A$ [cos28 sin28][cos28 sin28] -sin 28 cos 28 - sin 28 cos 28 $\cos^2 2\theta - \sin^2 2\theta$ $\cos 2\theta \sin^2 + \cos 2\theta \sin^2 \theta$ $-\cos 2\theta \sin^2 \theta - \sin^2 \theta \cos^2 \theta - \sin^2 2\theta + \cos^2 2\theta$ $\cos 4\theta = 2 \sin^2 \theta \cos^2 \theta$ –2 sin² cos 2*8* cos 4*8* $\{\sin c\theta \ \cos^2 \theta - \sin^2 \theta = \cos 2\theta\}$ [cos 40 sin 40] -sin 40 cos 40 $\{\sin c\theta = \sin^2 \theta = 2\sin \theta \cos \theta\}$

Hence,

Q20

$\begin{bmatrix} -\sin 4\theta & \cos 4\theta \end{bmatrix}$	
$\{\sin c \theta = \sin^2 \theta = 2 \sin \theta \cos \theta\}$	
ence,	
$A^{2} = \begin{bmatrix} \cos 4\theta & \sin 4\theta \\ -\sin 4\theta & \cos 4\theta \end{bmatrix}$	
20	3 5 -3 -5] show that 48 - 84 - 0 ₃₃
If $A = \begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{bmatrix}$ and $B = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$	3 5 -3 -5 3 5 show that $AB = BA = O_{3/3}$
olution	
	Same

From equation (i) and (ii), $AB = BA = O_{3\times 3}$ Ch 5 – Algebra of Matrices

```
[2 -3 -5] [-1 3 5]
    Given, A = -1 4 5 ,B = 1 -3 -5
                  1 -3 -4 -1 3 5
             AB = \begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \end{bmatrix} \begin{bmatrix} -1 & 3 & 5 \\ 1 & -3 & -5 \end{bmatrix}
                   1 -3 -4 -1 3 5
               [-2-3+5 6+9-15 10+15+25]
             = 1+4-5 -3-12+15 -5-20+25
                -1-3+4 3+9-12 5+15-20
               [0 0 0]
             - 0 0 0
              0 0 0
             AB = O_{3\times 3}
                                               ---(i)
               [-1 3 5][2 -3 -5]
             BA = 1 -3 -5 -1 4 5
                                                              -1 3 5 1 -3 -4
               -2-3+5 3+12-15 5+15-20
             = 2+3-5 -3-12+15 -5-15+20
               -2-3+5 3+12-15 5+15-20
               [0 0 0]
             = 0 0 0
              0 0 0
             BA = O3x3
                                                ---(ii)
   From equation (i) and (ii),
             AB = BA = O_{3\times 3}
Q21
                                   a<sup>2</sup> ab ac
 If A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \end{bmatrix} and B = \begin{bmatrix} a^2 & ab & ac \\ ab & b^2 & bc \end{bmatrix}, show that AB = BA = O_{3x3}.
        [0 c -b]
         b -a 0
                                   ac bc/c<sup>2</sup>
Solution
Given, A = \begin{bmatrix} 0 & c & -b \\ -c & o & a \end{bmatrix}, B = \begin{bmatrix} a^2 & ab & ac \\ ab & b^2 & bc \end{bmatrix}
              \begin{bmatrix} b & -a & 0 \end{bmatrix} \begin{bmatrix} ac & bc & c^2 \end{bmatrix}
         AB = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix} \begin{bmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{bmatrix}
           \begin{bmatrix} 0 + abc - abc & 0 + b^2c - b^2c & 0 + bc^2 - bc^2 \end{bmatrix}
         = -a^{2}c + 0 + a^{2}c - abc + 0 + abc - ac^{2} + 0 + ac^{2}
           a^{2}b - a^{2}b + 0 ab^{2} - ab^{2} + 0 abc - abc + 0
            0 0 0
         = 0 0 0
           0 0 0
                                          ---- (ii)
         AB = 03x3
```

Ch 5 – Algebra of Matrices

Q22

If
$$A = \begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$, show that $AB = A$ and $BA = B$.

Solution

Given,
$$A = \begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{bmatrix}, B = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$

$$AB = \begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{bmatrix} \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$

$$= \begin{bmatrix} 4+3-5 & -4-9+10 & -8-12+15 \\ 2-4+5 & 2+12-10 & 4+16-15 \\ 2+3-4 & -2-9+18 & -4-12+12 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{bmatrix}$$

$$AB = A$$

$$BA = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix} \begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{bmatrix}$$

$$= \begin{bmatrix} 4+2-4 & -6-6 & 8+12 & -10-10+16 \\ 2+2-3 & -3-8+9 & -5-10+12 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$

$$BA = B$$
Q23

Let
$$A = \begin{bmatrix} -1 & 1 & -1 \\ 3 & -3 & 3 \\ 5 & 5 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 4 & 3 \\ 1 & -3 & -3 \\ -1 & 4 & 4 \end{bmatrix}$, compute $A^2 - B^2$.

```
[-1 1 -1]
                                 [0 4 3]
Given, A = 3 -3 3 and B = 1 -3 -3
            5 5 5 4 4
             [-1 1 -1][-1 1 -1]
       A^2 = \begin{vmatrix} -1 & 1 & -1 \\ 3 & -3 & 3 \end{vmatrix} \begin{vmatrix} -1 & 1 & -1 \\ 3 & -3 & 3 \end{vmatrix}
           5 5 5 5 5 5
        = \begin{bmatrix} 1+3-5 & -1-3-5 & 1+3-5 \\ -3-9+15 & 3+9+15 & -3-9+15 \end{bmatrix}
          -5+15+25 5-15+25 -5+15+25
             [-1 -9 -1]
       A<sup>2</sup> = 3 27 3
                                             ----(i)
            35 15 35
             [0 4 3][0 4 3]
       B^2 = \begin{vmatrix} 1 & -3 & -3 \end{vmatrix} \begin{vmatrix} 1 & -3 & -3 \end{vmatrix}
             -1 4 4 -1 4 4
                                 Same textbooks, Mack away
         0+4-3 0-12+12 0-12+12
        = 0-3+3 4+9-12 3+9-12
         0+4-4 -4-12+16 -3-12+16
             [1 0 0]
       B^2 = 0 1 0
            0 0 1
Subtracting equation (ii) from equation (i),
       A^2 - B^2 = \begin{bmatrix} -1 & -9 & -1 \\ 3 & 27 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}
                 35 15 35 0 0 1
         [-1-1 -9-0 -1-0]
        = 3-0 27-1 3-0
         35-0 15-0 35-1
         [-2 -9 -1]
        = 3 26 3
         35 15 34
Hence,
                  [-2 -9 -1]
        A^2 - B^2 = 3 26 3
                 35 15 34
```

Q24

For the following matrices verify the associativity of matrix multiplication i.e.

$$(AB)C = A(BC): A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ -1 & 2 \\ 0 & 3 \end{bmatrix} \text{ and } C = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Ch 5 – Algebra of Matrices

Given,
$$A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ -1 & 2 \\ 0 & 3 \end{bmatrix}$$
 and
 $C = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
 $(AB)C = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -1 & 2 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
 $= \begin{bmatrix} 1-2+0 & 0+4+0 \\ -1+0+0+0+0+3 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
 $= \begin{bmatrix} -1 & 4 \\ -1 & 3 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \begin{bmatrix} 1 \\ -4$

Q25

For the following matrices verify the associativity of matrix multiplication i.e.

$$(AB)C = A(BC): A = \begin{bmatrix} 4 & 2 & 3 \\ 1 & 1 & 2 \\ 3 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

(ii) Given, [4 2 3] [1 -1 1] [1 2 -1] A = 1 1 2 , B = 0 1 2 , C = 3 0 1 3 0 1 2 -1 1 0 0 1 [4 2 3][1 -1 1])[1 2 -1] (AB)C = ||1 1 2 ||0 1 2 |||3 0 1 (301)2-11)001 [4+0+6 -4+2-3 4+4+3][1 2 -1] = 1+0+4 -1+1-2 1+2+2 3 0 1 3+0+2 -3+0-1 3+0+1 0 0 1 [10 -5 11][1 2 -1] = 5 -2 5 3 0 1 5 -4 4 8 0 1 $[10 - 15 + 0 \ 20 + 0 + 0 \ -10 + 5 + 11]$ = 5-6+0 10+0+0 -5-2+5 5-12+0 10+0+0 -5-4+4 [-5 20 -4] (AB)C = -1 10 -2 -7 10 -5 [4 2 3][[1 -1 1][1 2 -1]] A(BC) = 1 1 2 0 1 2 3 0 1 3 0 1][[2 -1 1][0 0 1]] [4 2 3][1-3+0 2+0+0 -1-1+1] = 1 1 2 0+3+0 0+0+0 0+1+2 3 0 1 2-3+0 4+0+0 -2-1+1 [4 2 3][-2 2 -1] = 1 1 2 3 0 3 3 0 1 -1 4 -2 [-8+6-3 8+0+12 -4+6-6] = -2+3-2 2+0+8 -1+3-4 -6+0-1 6+0+4 -3+0-2 -5 20 -4 ---(ii) $A(BC) = -1 \ 10 \ -2$ -7 10 -5 From equation (i) and (ii), (AB)C = A(BC)

Q26

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A(B + C) = AB + AC:

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

Civen

Given,
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

 $A (B + C) = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \end{pmatrix}$
 $= \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 + 0 & 0 + 1 \\ 2 + 1 & 1 - 1 \end{bmatrix}$
 $= \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 3 & 0 \end{bmatrix}$
 $= \begin{bmatrix} -1 - 3 & 1 + 0 \\ 0 + 6 & 0 + 0 \end{bmatrix}$
 $A (B + C) = \begin{bmatrix} -4 & 1 \\ 6 & 0 \end{bmatrix} - - -(i)$
 $AB = AC = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$
 $= \begin{bmatrix} -1 - 2 & 0 - 1 \\ 0 + 4 & 0 + 2 \end{bmatrix} + \begin{bmatrix} 0 + -1 & 1 + 1 \\ 0 + 2 & 0 - 2 \end{bmatrix}$
 $= \begin{bmatrix} -3 & -1 \\ 4 & 2 \end{bmatrix} + \begin{bmatrix} -1 & 2 \\ 2 & -2 \end{bmatrix}$
 $AB + AC = \begin{bmatrix} -4 & 1 \\ 6 & 0 \end{bmatrix} - - (i)$
Using equation (i) and (ii),
 $A (B + C) = AB + AC$

Q27

Pooks Hisch away For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A(B + C) = AB + AC:

$$A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \\ -1 & 2 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

 $A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \\ -1 & 2 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, C = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ Given, $A\left(B+C\right) = \begin{bmatrix} 2 & -1 \\ 1 & 1 \\ -1 & 2 \end{bmatrix} \left(\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \right)$ $= \begin{bmatrix} 2 & -1 \\ 1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 0+1 & 1-1 \\ 1+0 & 1+1 \end{bmatrix}$ -1][1 0] 2 = 1 1 1 2 2 -1 [2-1 0+2] = 1+1 0+2 -1+2 0+4 $A(B+C) = \begin{bmatrix} 1 & -2 \\ 2 & 2 \end{bmatrix}$ 1 4 $AB + AC = \begin{bmatrix} 2 & -1 \\ 1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ 1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ [0+1 2-1] [2+0 -2-1] - 0+1 1+1 + 1+0 -1+1 0+2 -1+2 -1+0 1+2 2 -3 [-1 1] = 1 2 + 1 0 2 1 -1 3 -1+2 1-3 1+1 2+0 = 2-1 1+3 1 -2] AB + AC = 2 2 1 4 From equation (i) and (ii), A(B+C) = AB + AC

Q28

If
$$A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & -1 & 0 \\ -2 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 5 & -4 \\ -2 & 1 & 3 \\ -1 & 0 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$, verify that $A(B - C) = AB - AC$.

Given, [1 0 -2] [0 5 -4] A = 3 -1 0 , B = -2 1 3 -1 0 2 -2 1 1 [1 5 2] $C = -1 \ 1 \ 0$ 0 -1 1 $A(B-C) = \begin{bmatrix} 1 & 0 & -2 \\ 3 & -1 & 0 \\ -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 5 & -4 \\ -2 & 1 & 3 \\ -1 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 5 & 2 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$ [1 0 -2][0-1 5-5 -4-2] = 3 -1 0 -2+1 1-1 3-0 -2 1 1 -1-0 0+1 2-1 [1 0 -2][-1 0 -6] = 3 -1 0 -1 0 3 -2 1 1 -1 1 1 [-1+0+2 0+0-2 -6+0-2] = -3+1+0 0+0+0 -18-3+0 $\begin{bmatrix} 0 & 1 & 16 \end{bmatrix} --(0)$ $\begin{bmatrix} 1 & 0 & -2 \\ 3 & -1 & 0 \\ -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 5 & -4 \\ -2 & 1 & 3 \\ -1 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 0 & -2 \\ 3 & -1 & 0 \\ -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$ 2-1-1 0+0+1 12+3+1 $A(B-C) = -2 \quad 0 \quad -21$ AB-AC= 3 -1 0 -2 1 3 - 3 -1 [0+0+2 5+0+0 -4+0-4] [1+0+0 5+0+2 2+0-2] - 0+2+0 15-1+0 -12-3+0 - 3+1+0 15-1+0 6+0+0 0-2-1 -10+1+0 8+3+2 0-2-1 -10+1+1 -4+0+1 He text [2 5 -8] [1 7 D = 2 14 -15 - 4 14 6 -3 -9 13 -3 -10 -3 [2-1 5-7 -8-0] - 2-4 14-14 -14-6 -3+3 -9+10 13+3 [1 -2 -8] $AB - AC = -2 \ 0 \ -21$ ---(ii) 0 1 16 From equation (i) and (ii), A(B-C) = AB - AC

Q29

Compute the elements a_{43} and a_{22} of the matrix:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & 2 \\ 0 & 3 & 2 \\ 4 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -3 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & -1 & 2 & -2 \\ 3 & -3 & 4 & -4 & 0 \end{bmatrix}$$

```
Given,
```

Given,

Ch 5 – Algebra of Matrices

[0 1 0] A = 0 0 1 pgr A^2 $= A \times A$ [0 1 0][0 1 0] - 0 0 1 0 0 1 pqrpqr 0+0+0 0+0+0 0+1+0 = 0+0+p 0+0+q 0+0+r $[0+0+pr p+0+qr 0+q+r^2]$ AЗ $= A^2 \times A$ [0 0 1][010] r 0 0 1 = p q $pr p+qr q+r^2$ p q r0+0+p 0+0+q 0+0+pr p+0+qr 0+0+r $0 + q + r^2$ $0+0+pq+pr^2$ $pr+0+q^2+qr^2$ $0+p+qr+qr+r^2$ р 9 А^З $q + r^2$ pr p+qr $pq + pr^2 pr + q^2 + qr^2 p + 2qr + r^2$ $pI + qA + rA^2$ [1 0 0] [0 1 0] [Ο] п $= p | 0 | 1 | 0 | + q | 0_{\sim} 0 | 1 | + r$ р 0 0 1 p q rpr p + qr \overline{a} p+0+0 0 + q + 0= 0 + 0 + prp + 0 + qr $0 + pq + pr^2$ $0 + q^2 + pr + qr^2$ $pI + qA + rA^2$ р a pr p + qr $pq + pr^2$ $pr + q^2 + qr^2$ p + 2qr + rFrom equation (i) and (ii) $A^3 = pI + qA + rA^2$

Q31

Solution

If w is a complex cube root of unity, show that

w = 0

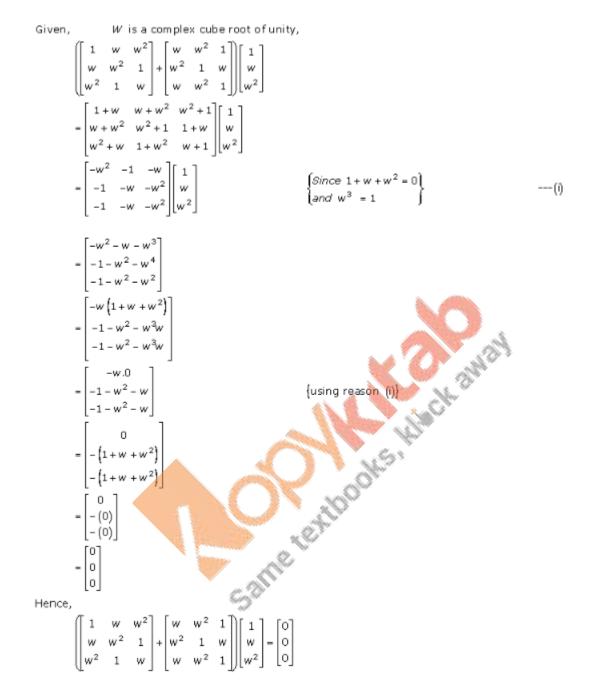
0

([1 w w²] [w w² 1])[1] [0]

 $|w w^2 1| + |w^2 1 w$

 $||w^2 ||w| ||w| ||w|^2 ||w^2|$

Ch 5 – Algebra of Matrices



Q32

If $A = \begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{bmatrix}$, show that $A^2 = A$

Ch 5 – Algebra of Matrices

Given,

1 -3 -4 $A^2 = A, A$ 2 -3 -5 2 -3 -5 -1 4 5 -1 4 5 1 -3 -4 1 -3 -4 4+3-5 -6-12+15 -10-15+20 -2-4+5 3+16-15 5+20-20 = 2+3-4 -3-12+12 -5-15+16 [2 -3 -5] - -1 4 5 1 -3 -4 = A Hence, $A^2 = A$

[2 -3 -5]

A = -1 4 5

Q33

If A=
$$\begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}$$
, show that $A^2 = I_3$

Solution

Given,

A = 3 0 -4 3 -1 -3 $A^2 = A.A$ [4 -1 -4][4 -1 -4]3 0 -4 3 0 -4 3 -1 -3 3 -1 -3 [16-3-12 -4+0+4 -16+4+12] = 12+0-12 -3+0+4 -12+0+12 12-3-9 -3+0+3 -12+4+9 [1 0 0] = 0 1 0 0 0 1 = 13 Hence, $A^{2} = I_{3}$

4 -1 -4

Q34

$$If \begin{bmatrix} 1 & 1 & x \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = 0, find x.$$

Given,

$$\begin{bmatrix} 1 & 1 & x \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = 0$$

$$\Rightarrow \qquad \begin{bmatrix} 1+0+2x & 0+2+x & 2+1+0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = 0$$

$$\Rightarrow \qquad \begin{bmatrix} 2x+1 & 2+x & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = 0$$

$$\Rightarrow \qquad \begin{bmatrix} 2x+1+2+x+3 \end{bmatrix} = 0$$

$$\Rightarrow \qquad 3x+6=0$$

$$\Rightarrow \qquad x = -\frac{6}{3}$$

$$\Rightarrow \qquad x = -2$$

Q35

$$If \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} -4 & 6 \\ -9 & x \end{bmatrix} find x$$

Solution

Given that $\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix} =$ -4 6 -9 x By multiplication of matrices, we have, $[2 \times 1 + 3 \times (-2) 2 \times (-3) + 3 \times 4]$ $5 \times 1 + 7 \times (-2) 5 \times (-3) + 7 \times 4$ $\begin{bmatrix} -4 & 6 \\ -9 & 13 \end{bmatrix} = \begin{bmatrix} -4 & 6 \\ -9 & x \end{bmatrix}$ $\Rightarrow x = 13$

Q36

If
$$\begin{bmatrix} x & 4 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & 2 & -4 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ -1 \end{bmatrix} = 0$$
, find x.

Given,

$$\begin{bmatrix} x & 4 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 \\ 1 & 0 & 2 \\ 0 & 2 & -4 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ -1 \end{bmatrix} = 0$$

$$\Rightarrow \quad \begin{bmatrix} 2x + 4 + 0 & x + 0 + 2 & 2x + 8 - 4 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ -1 \end{bmatrix} = 0$$

$$\Rightarrow \quad \begin{bmatrix} 2x + 4 & x + 2 & 2x + 4 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ -1 \end{bmatrix} = 0$$

$$\Rightarrow \quad \begin{bmatrix} (2x + 4) x + 4 (x + 2) - 1 (2x + 4) \end{bmatrix} = 0$$

$$\Rightarrow \quad 2x^{2} + 4x + 4x + 8 - 2x - 4 = 0$$

$$\Rightarrow \quad 2x^{2} + 6x + 4 = 0$$

$$\Rightarrow \quad 2x^{2} + 2x + 4x + 4 = 0$$

$$\Rightarrow \quad 2x (x + 1) + 4 (x + 1) = 0$$

$$\Rightarrow \quad x + 1 = 0 \text{ or } 2x + 4 = 0$$

$$\Rightarrow \quad x + 1 = 0 \text{ or } 2x + 4 = 0$$

$$\Rightarrow \quad x + 1 = 0 \text{ or } 2x + 4 = 0$$

Hence, x = -1 or -2

Q37

If
$$\begin{bmatrix} 1 & -1 \\ -1 & x \end{bmatrix} \begin{bmatrix} 0 & 1 & -1 \\ 2 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} = 0$$
, find x.

Solution

```
\begin{bmatrix} 1 & -1 & x \end{bmatrix} \begin{bmatrix} 0 & 1 & -1 \\ 2 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 0
Given,
⇒
=
         [0(x-2)+x.1+1.(x-4)]=0
⇒
          0 + x + x - 4 = 0
-
          2x - 4 = 0
\Rightarrow
-
          x = 2
```

Hence,

x = 2

Q38

Ch 5 – Algebra of Matrices

If
$$A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$$
 and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then prove that $A^2 - A + 2I = 0$.

Solution

Given,
$$A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}, I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $A^{2} - A + 2I$
 $= \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} - \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} + 2\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 9 - 8 & -6 + 4 \\ 12 - 8 & -8 + 4 \end{bmatrix} - \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$
 $= \begin{bmatrix} 1 & -2 \\ 4 & -4 \end{bmatrix} - \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$
 $= \begin{bmatrix} 1 & -3 + 2 & -2 + 2 + 0 \\ 4 - 4 + 0 & -4 + 2 + 2 \end{bmatrix}$
 $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 $= 0$
Hence,
 $A^{2} - A + 2I = 0$
139
If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then find \hat{a} so that $A^{2} = 5A + 3I$.

Q39

If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then find \hat{A} so that $A^2 = 5A + \hat{A}I$

Solution

Given,
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}, I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

And
 $A^2 = 5A + \lambda I$
 $\begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}$

$$\Rightarrow \begin{bmatrix} 3 & 1\\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1\\ -1 & 2 \end{bmatrix} = 5 \begin{bmatrix} 3 & 1\\ -1 & 2 \end{bmatrix} + 3 \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 9-1 & 3+2\\ -3+2 & -1+4 \end{bmatrix} = \begin{bmatrix} 15 & 5\\ -5 & 10 \end{bmatrix} + \begin{bmatrix} 2 & 0\\ 0 & 2 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 8 & 5\\ -5 & 3 \end{bmatrix} = \begin{bmatrix} 15+3 & 5\\ -5 & 10+3 \end{bmatrix}$$

Since, Corresponding entries of equal matrices are equal, So

> 8 = 15 + 2 1 = 8 - 15 $\lambda = -7$

Q40

If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
, show that $A^2 - 5A + 7I_2 = 0$

Ch 5 – Algebra of Matrices

Solution

Given,
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
$$A^{2} - 5A + 7I_{2}$$
$$= \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} - 5 \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} + 7 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 9 - 1 & 3 + 2 \\ -3 - 2 & -1 + 4 \end{bmatrix} - \begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$$
$$= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - \begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$$
$$= \begin{bmatrix} 8 - 15 + 7 & 5 - 5 + 0 \\ -5 + 5 + 0 & 3 - 10 + 7 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$= 0$$
Hence,
$$A^{2} - 5A + 7I_{2} = 0$$

Q41

If
$$A = \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix}$$
, show that $A^2 - 2A + 3I_2 = 0$

Solution

```
\begin{bmatrix} c & 3 \\ -1 & 0 \end{bmatrix}
A^{2} = 2A + 3I_{2}
= \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix} -2 \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix} +3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
= \begin{bmatrix} 4 - 3 & 6 + 0 \\ -2 + 0 & -3 + 0 \end{bmatrix} - \begin{bmatrix} 4 & 6 \\ -2 & 0 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}
= \begin{bmatrix} 1 - 4 + 3 & 6 - 6 + 0 \\ -2 + 2 & 0 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}
= \begin{bmatrix} 1 - 4 + 3 & 6 - 6 + 0 \\ -2 + 2 & 0 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}
Given, A = \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix}
                                     - [0 0]
                                      = 0
Hence,
                                     A^2 - 2A + 3I_2 = 0
```

Q42

Show that the matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ satisfies the equation $A^3 - 4A^2 + A = 0$

Given, $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ $A^2 = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ $= \begin{bmatrix} 4+3 & 6+6 \\ 2+2 & 3+4 \end{bmatrix}$ - $\begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix}$ $A^3 = A^2 A$ $\begin{array}{c} \bullet \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ $= \begin{bmatrix} 14+12 & 21+24 \\ 8+7 & 12+14 \end{bmatrix}$ $= \begin{bmatrix} 26 & 45 \\ 15 & 26 \end{bmatrix}$ Hence, $A^3 - 4A^2 + A$ $= \begin{bmatrix} 26 & 45\\ 15 & 26 \end{bmatrix} - 4 \begin{bmatrix} 7 & 12\\ 4 & 7 \end{bmatrix} + \begin{bmatrix} 2 & 3\\ 1 & 2 \end{bmatrix}$ $= \begin{bmatrix} 26 - 28 + 2 & 45 - 48 + 3 \\ 15 - 16 + 1 & 26 - 28 + 2 \end{bmatrix}$ 0 0 = 0 0 = 0

 $A^3 - 4A^2 + A = 0$ S0,

Q43

ooks, hisch analy Show that the matrix $A = \begin{bmatrix} 5 & 3 \\ 12 & 7 \end{bmatrix}$ is root of the equation $A^2 - 12A - I = 0$

Solution

Given,
$$A = \begin{bmatrix} 5 & 3 \\ 12 & 7 \end{bmatrix}$$
$$A^{2} - 12A - I$$
$$= \begin{bmatrix} 5 & 3 \\ 12 & 7 \end{bmatrix} \begin{bmatrix} 5 & 3 \\ 12 & 7 \end{bmatrix} - 12 \begin{bmatrix} 5 & 3 \\ 12 & 7 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 25 + 36 & 15 + 21 \\ 60 + 84 & 36 + 49 \end{bmatrix} - \begin{bmatrix} 60 & 36 \\ 144 & 84 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 61 & 36 \\ 144 & 85 \end{bmatrix} - \begin{bmatrix} 60 & 36 \\ 144 & 84 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 61 - 60 - 1 & 36 - 36 - 0 \\ 144 - 144 - 0 & 85 - 84 - 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$= 0$$
Since
$$A^{2} - 12A - I = 0$$
So,

A is a root of the equation $A^2 - 12A - I = 0$

Ch 5 – Algebra of Matrices

If
$$A = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix}$$
, find that $A^2 - 5A - 14B$

Solution

Given,
$$A = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix}$$

 $A^{2} = 5A - 14I$
 $= \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix} -5 \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix} -14 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 9 + 20 & -15 - 10 \\ -12 - 8 & 20 + 4 \end{bmatrix} - \begin{bmatrix} 15 & -25 \\ -20 & 24 \end{bmatrix} - \begin{bmatrix} 15 & -25 \\ -20 & 24 \end{bmatrix} - \begin{bmatrix} 14 & 0 \\ 0 & 14 \end{bmatrix}$
 $= \begin{bmatrix} 29 & -25 \\ -20 + 20 - 0 & 24 - 10 - 14 \end{bmatrix}$
 $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 $= 0$
So,
 $A^{2} - 5A - 14I = 0$
45
If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, show that $A^{2} - 5A = 7T = 0$
Use this to find A^{4}
olution

 $A^2 - 5A - 14I = 0$

Q45

Use this to find A4

1

2

It is given that $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ $\therefore A^2 = A \cdot A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ $= \begin{bmatrix} 3(3)+1(-1) & 3(1)+1(2) \\ -1(3)+2(-1) & -1(1)+2(2) \end{bmatrix}$ $= \begin{bmatrix} 9-1 & 3+2 \\ -3-2 & -1+4 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$: L.H.S. = $A^2 - 5A + 7I$ $=\begin{bmatrix} 8 & 5\\ -5 & 3 \end{bmatrix} - 5\begin{bmatrix} 3 & 1\\ -1 & 2 \end{bmatrix} + 7\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$ (I = 0) $(A^{2} - 5A + 7] = 0, we have$ $A^{2} = 5A - 71$ Therefore, $A^{4} = A^{2} \times A^{2} = (5A - 7)(5A - 7)$ $A^{4} = 25A^{2} - 35A(-35)(A + 49)$ $A^{4} = 25(5A - 7) - 70A + 49)$ $A^{4} = 25(5A - 7) - 70A + 49)$ $A^{4} = 25(5A - 7) - 70A + 49)$ $A^{4} = 55A - 175(-70)$ $A^{4} = 55A - 12^{-7}$ $= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - \begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$ $\Rightarrow A^4 = 55 \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} - 126 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\Rightarrow A^{4} = \begin{bmatrix} 165 & 55 \\ -55 & 110 \end{bmatrix} - \begin{bmatrix} 126 & 0 \\ 0 & 126 \end{bmatrix}$ $\Rightarrow A^{4} = \begin{bmatrix} 165 - 126 & 55 - 0 \\ -55 - 0 & 110 - 126 \end{bmatrix}$ $\Rightarrow A^4 = \begin{bmatrix} 39 & 55 \\ -55 & -16 \end{bmatrix}$

Ch 5 – Algebra of Matrices

If
$$A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$$
 and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find k so that $A^2 = kA - 2I$

Solution

$$A^{2} = A \cdot A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} 3(3) + (-2)(4) & 3(-2) + (-2)(-2) \\ 4(3) + (-2)(4) & 4(-2) + (-2)(-2) \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 4 & -4 \end{bmatrix}$$

Now $A^2 = kA - 2I$

$\Rightarrow \begin{bmatrix} 1 & -2 \\ 4 & -4 \end{bmatrix}$	$=k\begin{bmatrix}3\\4\end{bmatrix}$	$\begin{bmatrix} -2 \\ -2 \end{bmatrix} - 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 1			_
$\Rightarrow \begin{bmatrix} 1 & -2 \\ 4 & -4 \end{bmatrix}$	$= \begin{bmatrix} 3k \\ 4k \end{bmatrix}$	$\begin{bmatrix} -2k \\ -2k \end{bmatrix} - \begin{bmatrix} 2 \\ 0 \end{bmatrix}$	0 2			O.s
$\Rightarrow \begin{bmatrix} 1 & -2 \\ 4 & -4 \end{bmatrix}$	$\left] = \begin{bmatrix} 3k-2\\ 4k \end{bmatrix}$	$\begin{bmatrix} -2k \\ -2k-2 \end{bmatrix}$			KC	CH BHBH
Comparing th	e correspo	nding elemen	ts, we have			Ch.
3k - 2 = 1				16 E E E	har	
$\Rightarrow 3k = 3$				\$ ` {	1993	
$\Rightarrow k = 1$				500		
Thus, the valu	e of k is 1.					
Q47			2	C.B.		
If $A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$,	find k suc	th that $A^2 - 8A$	+ <i>kI</i> = 0.			

Q47

If
$$A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$$
, find k such that $A^2 = 8A + kI = 0$.

Ch 5 – Algebra of Matrices

Here, $A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$ And $A^2 - 8A + kI = 0$ $\begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix} - 8 \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix} + k \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0$ ⇒ $\begin{bmatrix} 1+0 & 0+0 \\ -1-7 & 0+49 \end{bmatrix} - \begin{bmatrix} 8 & 0 \\ -8 & 56 \end{bmatrix} + \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ ⇒ $\begin{bmatrix} 1 & 0 \\ -8 & 49 \end{bmatrix} - \begin{bmatrix} 8 & 0 \\ -8 & 56 \end{bmatrix} + \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ ⇒ $\begin{bmatrix} 1-8+k & 0+0+0 \\ -8+8+0 & 49-56+k \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ ⇒ $\begin{bmatrix} -7+k & 0 \\ 0 & -7+k \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ ⇒

Since,

Q48

If
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, $f(x) = x^2 - 2x - 3$, show that $f(A) = 0$

Solution

Given,

 $f(A) = A^2 - 2A - 3I$

$$\begin{array}{l} \text{set} \\ \text{corresponding entries of equal matrices are equal, so} \\ & -7 + k = 0 \\ & k = 7 \end{array} \\ \text{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, \ f(x) = x^2 - 2x - 3, \text{ show that } f(A) = 0 \\ \text{thion} \\ \text{n.} \\ A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \text{ and } f(x) = x^2 - 2x - 3, \text{ show that } f(A) = 0 \\ \text{thion} \\ \text{n.} \\ A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} - 2\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} - 3\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} 1 + 4 & 2 + 2 \\ 2 + 2 & 4 + 1 \end{bmatrix} - \begin{bmatrix} 2 & 4 \\ 4 & 2 \end{bmatrix} - 3\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} 1 + 4 & 2 + 2 \\ 2 + 2 & 4 + 1 \end{bmatrix} - \begin{bmatrix} 2 & 4 \\ 4 & 2 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \\ = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix} - \begin{bmatrix} 2 & 4 \\ 4 & 2 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \\ = \begin{bmatrix} 5 & -2 - 3 & 4 - 4 - 0 \\ 4 - 4 - 0 & 5 - 2 - 3 \end{bmatrix} \\ = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \\ = 0 \end{array}$$

S0,

f(A) = 0

Q49

Ch 5 – Algebra of Matrices

If
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$
 and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then find $\lambda \mu$ so that $A^2 = \lambda A + \mu I$

Solution

Given,

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}, I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Given,

diven,
$A^2 = \lambda A + \mu I$
$\Rightarrow \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} + \mu \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
$\Rightarrow \begin{bmatrix} 4+3 & 6+6\\ 2+2 & 3+4 \end{bmatrix} = \begin{bmatrix} 2\lambda & 3\lambda\\ \lambda & 2\lambda \end{bmatrix} + \begin{bmatrix} \mu & 0\\ 0 & \mu \end{bmatrix}$
$\begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix} = \begin{bmatrix} 2\lambda + \mu & 3\lambda \\ \lambda & 2\lambda + \mu \end{bmatrix}$
Since corresponding entries of equal matrices are equal, so
$2\lambda + \mu = 7$ (i)
x = 4 (ii)
Put & from equation (ii) in equation (i),
2(4) + µ = 7 µ = 7 - 8
$\mu = -1$
Hence. $\lambda = 4, \mu = -1$
Q50 Charles

Find the value of x for which the matrix product $\begin{bmatrix}
2 & 0 & 7 \\
0 & 1 & 0 \\
1 & -2 & 1
\end{bmatrix}
\begin{bmatrix}
-x & 14x & 7x \\
0 & 1 & 0 \\
x & -4x & -2x
\end{bmatrix}$ equals an identity matrix.

Ch 5 – Algebra of Matrices

Given,

	[2 0	ר ב][x 14x	7x]	[1	0 0]				
	0 1	1 0 0	1	0	= 0	1 0				
	1 -	2 1 🛛 🛪	-4x	-2x	0	0 1				
	[-2x	+0+7x	28x +	0-28	× 14	x + 0 - 14.	×1	[1	0	0]
⇒	0 -	+0+0	0+	-1+0	(0+0+0	-	0	1	0
	x	+0+x	14x ·	- 2 - 4x	72	x + 0 - 2x		0	0	1
	[5×	0	٦٦	[1 0	כס					
⇒	0	1	0 =	0 1	0					
	Lo	10x - 2	5x	0 0	1					

Since, corresponding entries of equal matrices are equal, so

5x = 1 and 10x - 2 = 0 $x = \frac{1}{5}$ and $x = \frac{1}{5}$ $x = \frac{1}{5}$ ⇒ Hence, $x = \frac{1}{5}$

Q51

Solve the matrix equation $\begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} X \\ 5 \end{bmatrix} = 0$

Solution

Here,

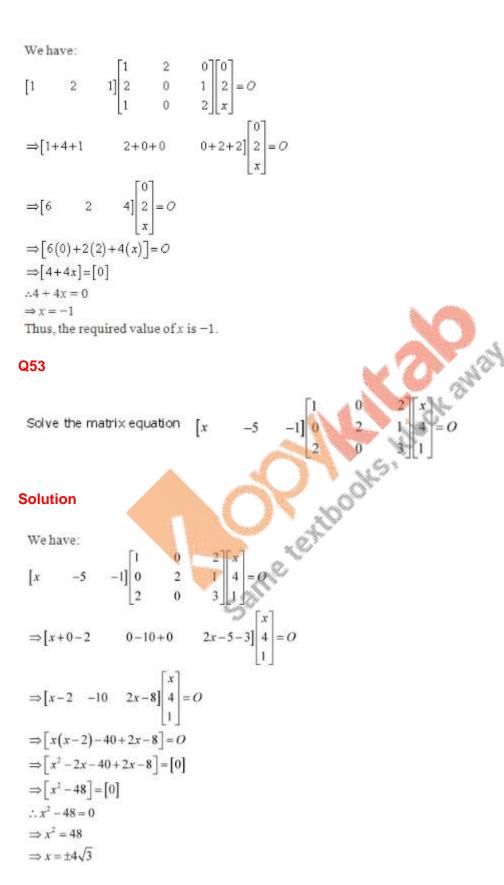
 $\begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x \\ 5 \end{bmatrix} = 0$ $[x-2 \ 0-3] \begin{bmatrix} x \\ 5 \end{bmatrix} = 0$ ⇒ [(x - 2)x - 15] = 0⇒ $x^2 - 2x - 15 = 0$ ⇒ $x^2 - 5x + 3x - 15 = 0$ ⇒ x(x-5)+3(x-5)=0⇒ \Rightarrow (x-5)(x+3) = 0x - 5 = 0 or x + 3 = 0⇒ ⇒ x = 5 or x = -3

So,

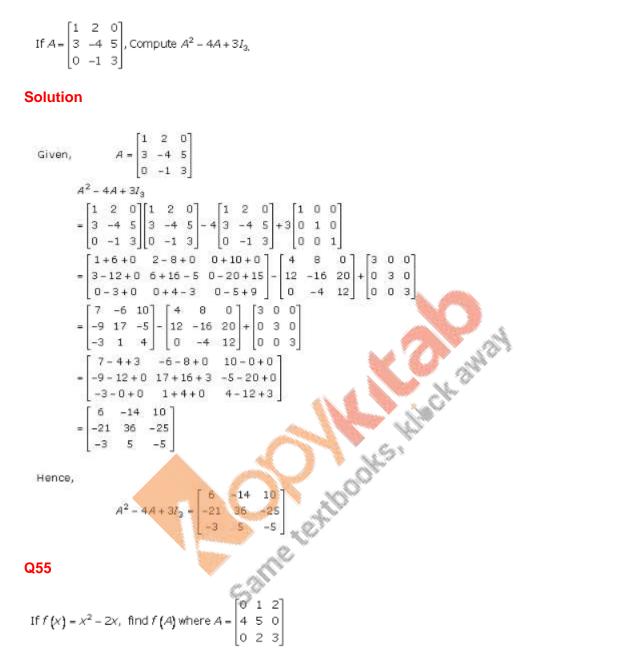
x = 5 or -3

Q52

Solve the matrix equation
$$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ x \end{bmatrix} = O?$$



Ch 5 – Algebra of Matrices



Given,		$A = \begin{bmatrix} 0 & 1 & 2 \\ 4 & 5 & 0 \\ 0 & 2 & 3 \end{bmatrix}$
⇒		$f(x) = x^2 - 2x$ $f(A) = A^2 - 2A$
⇒	f(A) =	$\begin{bmatrix} 0 & 1 & 2 \\ 4 & 5 & 0 \\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 4 & 5 & 0 \\ 0 & 2 & 3 \end{bmatrix} - 2 \begin{bmatrix} 0 & 1 & 2 \\ 4 & 5 & 0 \\ 0 & 2 & 3 \end{bmatrix}$
⇒	f (A) =	$\begin{bmatrix} 0+4+0 & 0+5+4 & 0+0+6 \\ 0+20+0 & 4+25+0 & 8+0+0 \\ 0+8+0 & 0+10+6 & 0+0+9 \end{bmatrix} - \begin{bmatrix} 0 & 2 & 4 \\ 8 & 10 & 0 \\ 0 & 4 & 6 \end{bmatrix}$
⇒	f(A) =	20 29 8 - 8 10 0 8 16 9 0 4 6
⇒	f (A) =	4-0 9-2 6-4 20-8 29-10 8-0 8-0 16-4 9-6
2	f (A) -	4 7 2 12 19 8 8 12 3
Q56		in Ch
If f (×)	= X ³ + 4	$4x^2 - x$, find f (A), where $A = \begin{bmatrix} 0 & 1 & 2 \\ 2 & -3 & 0 \\ 1 & -1 & 0 \end{bmatrix}$
Soluti	on	- CAL
		$ \frac{x^{2} - x}{x^{2} - x}, \text{ find } f(A), \text{ where } A = \begin{bmatrix} 0 & 1 & 2 \\ 2 & -3 & 0 \\ 1 & -1 & 0 \end{bmatrix} $

Ch 5 – Algebra of Matrices

Given, [0 1 2] A = 2 - 3 01 -1 0 $f(x) = x^3 + 4x^2 - x$ And $\Rightarrow f(x) = A^3 + 4A^2 - A$ ----(i) $A^2 = A \times A$ $= \begin{bmatrix} 0 & 1 & 2 \\ 2 & -3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 2 & -3 & 0 \end{bmatrix}$ 1 -1 0 1 -1 0 [0+2+2 0-3-2 0+0+0] = 0-6+0 2+9+0 4+0+0 0-2+0 1+3+0 0+0+0 4 -5 0] A² -6 11 4 -2 4 2 $= A^2 \times A$ А^З 4 -5 0 [0 1 2] -6 11 4 2 -3 0 -2 4 2 1 -1 0 0-10+0 4+15+0 8+0+0 = 0+22+4 -6-33-4 -12+0+0 0+8+2 -2-12-2 -4+0+0 [-10 19 8 А^З = 26 -43 -12 10 -16 -4 Put the value of A, A^2 , A^3 in equation (i) $f(A) = A^3 + 4A^2 - A$ [-10 19 8] [4 -15 0] [0 1 2] = 26 -43 -12 +4 -6 11 4 2 -3 0 10 -16 -4 -2 4 2 1 -1 0 [-10+16-0 19-20-1 8+0-2 = 26-24-2 -43+44+3 -12+16+0 10-8-1 -16+16+1 -4+8-0 [6 -2 6] = 0 4 4 1 1 4 Hence, [6 -2 6] $f(A) = \begin{bmatrix} 0 & -1 \\ 0 & 4 & 4 \\ 1 & 1 & 4 \end{bmatrix}$

Q57

Ch 5 – Algebra of Matrices

$$If A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$$
 then show that A is a root of the polynomial
$$f(x) = x^3 - 6x^2 + 7x + 2$$

Solution

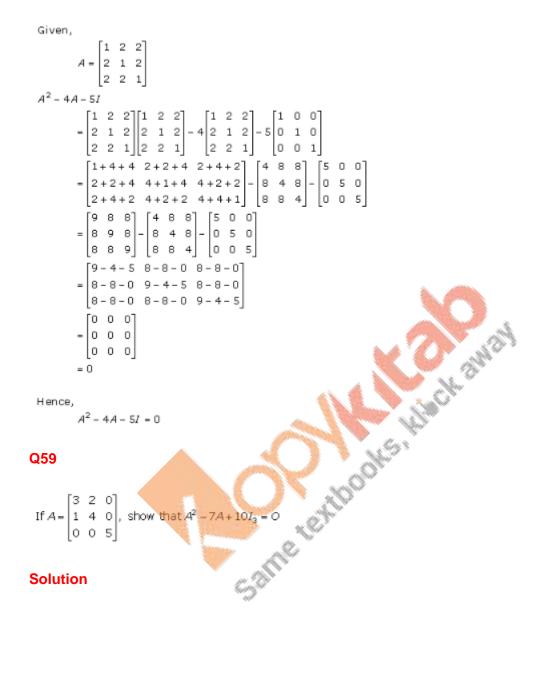
Given that, $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \end{bmatrix}$ and $f(x) = x^3 - 6x^2 + 7x + 2$ 203 Therefore, $f(A) = A^3 - 6A^2 + 7A + 2I_3$ First find A²: $A^{2} = A \times A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{bmatrix}$ Now, Let us find A³: $A^{3} = A^{2} \times A = \begin{bmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{bmatrix}$ Thus, $f(A) = A^3 - 6A^2 + 7A + 2I_3$ 21034 508 102 = 12 8 23 -6 2 4 5 +7 0 2 1 34 0 55 8 0 13 203 $= \begin{bmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \end{bmatrix} - \begin{bmatrix} 30 & 0 & 48 \\ 12 & 24 & 30 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 14 \end{bmatrix}$ 0 14 020 34 0 55 48 0 78 14 0 21 21-30+7+2 0 34-48+14+0 = 12-12+0 8-24+14+2 23-30+7+0 34-48+14+0 0 55-78+21+2 000 = 0 0 0 = 0 000

Thus, A is a root of the polynomial.

Q58

```
If A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}, then prove that A^2 - 4A - 5I = 0.
```

Ch 5 – Algebra of Matrices



Ch 5 – Algebra of Matrices

```
Given,
                                          A = \begin{bmatrix} 3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix}
        A^2 - 7A + 10I_3
                                           = \begin{bmatrix} 3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix} - 7 \begin{bmatrix} 3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix} + 10 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
                                          = \begin{bmatrix} 9+2+0 & 6+8+0 & 0+0+0 \\ 3+4+0 & 2+16+0 & 0+0+0 \\ 0+0+0 & 0+0+0 & 0+0+25 \end{bmatrix} - \begin{bmatrix} 21 & 14 & 0 \\ 7 & 28 & 0 \\ 0 & 0 & 35 \end{bmatrix} + \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix}
                                                   [11 14 0] [21 14 0] [10 0 0]
                                                                                                                                                                                               THE REALITY OF THE REAL PROPERTY OF THE REAL PROPER
                                          = 7 18 0 - 7 28 0 + 0 10 0
                                                      0 0 25 0 0 35 0 0 10
                                                   [11-21+10 14-14+0 0-0+0
                                            = 7-7+0 18-28+10 0-0+0
                                                         0-0+0 0-0+0 25-35+10
                                                   [0 0 0]
                                            = 0 0 0
                                             0 0 0
                                            = 0
        Hence,
                                            A^2 - 7A + 10I_3 = 0
Q60
   Without using the concept of inverse of a matrix, find the matrix \begin{bmatrix} x & y \\ z & u \end{bmatrix} such that
   \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} x & y \\ z & u \end{bmatrix} = \begin{bmatrix} -16 & -6 \\ 7 & 2 \end{bmatrix}
```

Ch 5 – Algebra of Matrices

```
Given,
          \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} x & y \\ z & u \end{bmatrix} = \begin{bmatrix} -16 & -6 \\ 7 & 2 \end{bmatrix}
          \begin{bmatrix} 5x - 7z & 5y - 7u \\ -2x + 3z & -2y + 3u \end{bmatrix} = \begin{bmatrix} -16 & -6 \\ 7 & 2 \end{bmatrix}
⇒
Since, corresponding entries of equal matrices are equal, so
          5x - 7z = -16
                                                 ---(i)
          -2x + 3z = 7
                                                  ----(ii)
          5y - 7u = -6
                                                  ---- (iii)
         -2y + 3u = 2
                                                  ---(iv)
Solving equation (i) and (ii)
          10x - 14z = -32
                                             -10x + 15z = 35
                          Z = 3
Put the value of z in equation (i)
          5x - 7(3) = -16
          5x = 16 + 21
⇒
          5x = 5
⇒
          \times = 1
=
Solving equation (iii) and (iv)
          10y - 14u = -12
          -10y + 15u = 10
                         u = -2
Put the value of u in equation (iii)
          5y - 7u = -6
          5y - 7(-2) = -6
⇒
          5y + 14 = -6
\Rightarrow
\Rightarrow
          5y = -20
\Rightarrow
          y = -4
So,
         \begin{bmatrix} x & y \\ z & u \end{bmatrix} = \begin{bmatrix} 1 & -4 \\ 3 & -2 \end{bmatrix}
```

Q61

Find the matrix A such that $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} A = \begin{bmatrix} 3 & 3 & 5 \\ 1 & 0 & 1 \end{bmatrix}$

Ch 5 – Algebra of Matrices

```
Given,
               \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} A = \begin{bmatrix} 3 & 3 & 5 \\ 1 & 0 & 1 \end{bmatrix}
 Since, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}_{2 \times 2} A = \begin{bmatrix} 3 & 3 & 5 \\ 1 & 0 & 1 \end{bmatrix}_{2 \times 3}
               A is a matrix of order 2 × 3
  \Rightarrow
  So,
               Let A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}
                \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = \begin{bmatrix} 3 & 3 & 5 \\ 1 & 0 & 1 \end{bmatrix}
  ⇒
                \begin{bmatrix} a+d & b+e & c+c \\ 0+d & 0+e & 0+f \end{bmatrix} = \begin{bmatrix} 3 & 3 & 5 \\ 1 & 0 & 1 \end{bmatrix}
                                                               ⇒
  Since, corresponding entries of equal matrices are equal, so
                d=1,\; e=0,\; f=1
  And
              a+d = 3
                a + 1 = 3
                a = 3 - 1
                a = 2
                b+e=3
                b + 0 = 3
                b = 3
  And c+f=5
                c + 1 = 5
                c = 4
  Hence,
                A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}
                A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 0 & 1 \end{bmatrix}
Q62
 Find the matrix A so that A \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix}
```

It is given that: $\begin{bmatrix} 3 \\ 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix}$ 1 2 A 5 The matrix given on the R.H.S. of the equation is a 2 × 3 matrix and the one given on the L.H.S. of the equation is a 2×3 matrix. Therefore, X has to be a 2×2 matrix. C a Now, let X =d Therefore, we have: $\begin{bmatrix} c \\ d \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix}$ a b $\begin{bmatrix} a+4c & 2a+5c & 3a+6c \\ b+4d & 2b+5d & 3b+6d \end{bmatrix} = \begin{bmatrix} -7 & -8 \\ 2 & 4 \end{bmatrix}$ -9⁻ 6 => Equating the corresponding elements of the two matrices, we have a + 4c = -7, 2a + 5c = -8, 3a + 6c = -9b + 4d = 2. 2b + 5d = 4. 3b + 6d = 6Now, $a + 4c = -7 \Rightarrow a = -7 - 4c$ $\therefore 2a + 5c = -8 \Longrightarrow -14 - 8c + 5c = -8$ $\Rightarrow -3c = 6$ $\Rightarrow c = -2$ $\therefore a = -7 - 4(-2) = -7 + 8 = 1$ Now, $b + 4d = 2 \Rightarrow b = 2 - 4d$ $\therefore 2b + 5d = 4 \Rightarrow 4 - 8d + 5d = 4$ $\Rightarrow -3d = 0$ $\Rightarrow d = 0$ $\therefore b = 2 - 4(0) = 2$ Thus, a = 1, b = 2, c = -2, d = 0Hence, the required matrix X is

Q63

Find the matrix A such that

[4]		-4	8	4]
1	Α=	-1	2	1
[3]	A =	-3	б	зј

Ch 5 – Algebra of Matrices

We know that two matrices B and C are eligible for the product BC only when number of columns of B is equal to number of rows in C. So, from the given definition we can conclude that the order of matrix A is 1x3i.e. we can assume $A = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$. Therefore,

 \Rightarrow

-

 \Rightarrow

 $\begin{bmatrix} 4\\1\\3\\a_1 \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}_{k3} = \begin{bmatrix} -4 & 8 & 4\\-1 & 2 & 1\\-3 & 6 & 3 \end{bmatrix}_{k3},$ $\begin{bmatrix} 4 \times (X_1) & 4 \times (X_2) & 4 \times (X_3) \\ 1 \times (X_1) & 1 \times (X_2) & 1 \times (X_3) \\ 3 \times (X_1) & 3 \times (X_2) & 3 \times (X_3) \end{bmatrix}_{3\times 3} = \begin{bmatrix} -4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3 \end{bmatrix}_{3\times 3}$ $\begin{bmatrix} 4x_1 & 4x_2 & 4x_3 \\ x_1 & x_2 & x_3 \\ 3x_1 & 3x_2 & 3x_3 \end{bmatrix}_{3\times 3} = \begin{bmatrix} -4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3 \end{bmatrix}_{3\times 3}$ Same textbooks white the same $4x_1 = -4$, $4x_2 = 8$, $4x_3 = 4$ $x_1 = -1, x_2 = 2, x_3 = 1$ Solving

So, matrix $A = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$.

Q64

Find the matrix A such that

[-1 0 -1] 2 1 3 -1 1 0 0 0 1

Jsing matrix multiplication,

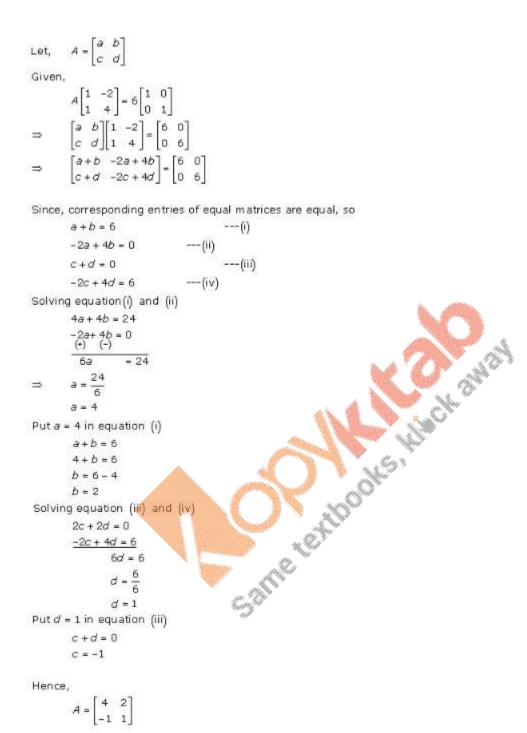
$$\begin{array}{c} \text{.et, } A_{1} = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix}, A_{2} = \begin{bmatrix} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \text{ and } A_{3} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \\ \text{Now, } A_{1}A_{2} = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \\ \begin{array}{c} = \begin{bmatrix} (2 \times -1) + (1 \times -1) + (3 \times 0) & (2 \times 0) + (1 \times 1) + (3 \times 1) & (2 \times -1) + (1 \times 0) + (3 \times 1) \end{bmatrix} \\ = \begin{bmatrix} -3 & 4 & 1 \end{bmatrix} \\ \text{and } (A_{1}A_{2})A_{3} = \begin{bmatrix} -3 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \\ \begin{array}{c} = \begin{bmatrix} (-3 \times 1) + (4 \times 0) + (1 \times -1) \end{bmatrix} \\ (A_{1}A_{2})A_{3} = \begin{bmatrix} -4 \end{bmatrix} = A \end{array} \\ \text{Therefore matrix } A = \begin{bmatrix} -4 \end{bmatrix} \\ \text{Note : The problem can also be solved by calculating } (A_{2}A_{3}) \text{ first} \\ \text{then pre multiplying it with } A_{1} \text{ as matrix multiplication.} \end{array}$$

Q65

Find a 2×2 matrix A such that

 $A\begin{bmatrix}1 & -2\\1 & 4\end{bmatrix} = 6I_2$

Ch 5 – Algebra of Matrices



If
$$A = \begin{bmatrix} 0 & 0 \\ 4 & 0 \end{bmatrix}$$
, find A^{16} .

Given,

 $A = \begin{bmatrix} 0 & 0 \\ 4 & 0 \end{bmatrix}$ $A^2 = A \times A$ $\begin{bmatrix} 0 & 0 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 4 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 + 0 & 0 + 0 \\ 0 + 0 & 0 + 0 \end{bmatrix}$ = [0 0 0 0] = 0 A⁴ $= A^2 \times A^2$ $= 0 \times 0$ = 0 A¹⁶ $= A^4 \times A^4$ = 0 × 0 = 0 So, A¹⁶ is null matrix.

Q67

Same textbooks which away If $A = \begin{bmatrix} 0 & -x \\ x & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $x^2 = -1$, Then show that $(A + B)^2 = A^2 + B^2$.

Ch 5 – Algebra of Matrices

RD Sharma Solutions Class 12

Solving the LHS of the given equation we have , $\Rightarrow \qquad A + B = \begin{bmatrix} 0 & -x \\ -x \end{bmatrix} + \begin{bmatrix} 0 & 1 \end{bmatrix}$

$$A + B = \begin{bmatrix} x & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$A + B = \begin{bmatrix} 0 & -x + 1 \\ x + 1 & 0 \end{bmatrix}$$

$$(A + B)^{2} = \begin{bmatrix} 0 & -x + 1 \\ x + 1 & 0 \end{bmatrix}^{2} = \begin{bmatrix} 0 & -x + 1 \\ x + 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -x + 1 \\ x + 1 & 0 \end{bmatrix}$$

$$(A + B)^{2} = \begin{bmatrix} (0 \times 0) + ((-x + 1) \times (x + 1)) & (0 \times (-x + 1)) + ((-x + 1) \times 0) \\ ((x + 1) \times 0) + (0 \times (x + 1)) & ((x + 1) \times (-x + 1)) + (0 \times 0) \end{bmatrix}$$

$$(A + B)^{2} = \begin{bmatrix} 1 - x^{2} & 0 \\ 0 & 1 - x^{2} \end{bmatrix}.$$

Solving the RHS we get,

 \Rightarrow

$$A^{2} + B^{2} = \begin{bmatrix} 0 & -x \\ x & 0 \end{bmatrix} \begin{bmatrix} 0 & -x \\ x & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$A^{2} + B^{2} = \begin{bmatrix} (0 \times 0) + ((-x) \times (x)) & (0 \times (-x)) + ((-x) \times 0) \\ ((x) \times 0) + (0 \times (x)) & ((x) \times (-x)) + (0 \times 0) \end{bmatrix} + \begin{bmatrix} (0 \times 0) + (1 \times 1) & (0 \times 1) + (1 \times 0) \\ (1 \times 0) + (0 \times 1) & (1 \times 1) + (0 \times 0) \end{bmatrix}$$

$$A^{2} + B^{2} = \begin{bmatrix} -x^{2} & 0 \\ 0 & -x^{2} \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A^{2} + B^{2} = \begin{bmatrix} 1 - x^{2} & 0 \\ 0 & 1 - x^{2} \end{bmatrix}$$

Subsituting the value of $x^2 = -1$ in the LHS and RHS above,

$$A^{2} + B^{2} = \begin{bmatrix} 1 - x^{2} & 0 \\ 0 & 1 - x^{2} \end{bmatrix}$$

Subsituting the value of $x^{2} = -1$ in the LHS and RHS above,
$$\Rightarrow (A + B)^{2} = \begin{bmatrix} 1 - x^{2} & 0 \\ 0 & 1 - x^{2} \end{bmatrix} = \begin{bmatrix} 1 + 1 & 0 \\ 0 & 1 + 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \text{ and}$$
$$A^{2} + B^{2} = \begin{bmatrix} 1 - x^{2} & 0 \\ 0 & 1 - x^{2} \end{bmatrix} = \begin{bmatrix} 1 + 1 & 0 \\ 0 & 1 + 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
$$\Rightarrow (A + B)^{2} = A^{2} + B^{2}.$$

268
If $A = \begin{bmatrix} 1 & 0 & -3 \\ 2 & 1 & 3 \end{bmatrix}$, then verify that $A^{2} + A = A(A + 1)$,

Q68

If
$$A = \begin{bmatrix} 1 & 0 & -3 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$$
, then verify that $A^2 + A = A(A+1)$,

where I is the identify matrix.

Solving the LHS i.e. $A^{2} + A = \begin{bmatrix} 1 & 0 & -3 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}^{2} + \begin{bmatrix} 1 & 0 & -3 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & -3 & -6 \\ 4 & 4 & 0 \\ 2 & 2 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 0 & -3 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$ $= \begin{bmatrix} 2 & -3 & -9 \\ 6 & 5 & 3 \\ 2 & 3 & 5 \end{bmatrix}$ Solving the RHS i.e. $A(A+I) = \begin{bmatrix} 1 & 0 & -3 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 & -3 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & -3 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & -3 \\ 2 & 2 & 3 \\ 2 & 3 & 5 \end{bmatrix}$ If $A = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix}$, then find $A^2 - 5A - 14$; Hence, obtain A^3 . Nution **Q69 Solution**

We have, $A = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix}$ Now, $A^2 = AA = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} (3 \times 3) + (-5 \times -4) & (3 \times -5) + (-5 \times 2) \\ (-4 \times 3) + (2 \times -4) & (-4 \times -5) + (2 \times 2) \end{bmatrix}$ $=\begin{bmatrix} 29 & -25 \\ -20 & 24 \end{bmatrix}$ $-5A = \begin{bmatrix} -15 & 25 \\ 20 & -10 \end{bmatrix}$ and $-14I = \begin{bmatrix} -14 & 0 \\ 0 & -14 \end{bmatrix}$ $A^{2}-5A-14I = \begin{bmatrix} 29 & -25 \\ -20 & 24 \end{bmatrix} + \begin{bmatrix} -15 & 25 \\ 20 & -10 \end{bmatrix} + \begin{bmatrix} -14 & 0 \\ 0 & -14 \end{bmatrix} \\ = \begin{bmatrix} 29 - 15 - 14 & -25 + 25 + 0 \\ -20 + 20 + 0 & 24 - 10 + -14 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ By using dist of matrices over a matrix addition Now, $A^2 - 5A - 14I = 0$ \Rightarrow A² = 5A + 14I \Rightarrow $A^3 = A^2 A = (5A + 14I) A$ $\Rightarrow A^3 = A^2 A = 5A^2 + 14A$ Same texthooks $\Rightarrow A^{3} = 5 \begin{bmatrix} 29 & -25 \\ -20 & 24 \end{bmatrix} + 14 \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix}$ $\Rightarrow A^{3} = \begin{bmatrix} 145 & -125 \\ -100 & 120 \end{bmatrix} + \begin{bmatrix} 42 & -70 \\ -56 & 28 \end{bmatrix}$ $\Rightarrow A^3 = \begin{bmatrix} 187 & -195 \\ -156 & 148 \end{bmatrix}$ Q70 If $p(x) = \begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix}$, then show that P(x) P(y) = P(x + y) = p(y)P(x).

Ch 5 – Algebra of Matrices

- OPL ZINZIN

0

хa

We have,

$$P(x). P(y) = \begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix} \begin{bmatrix} \cos y & \sin y \\ -\sin y & \cos y \end{bmatrix}$$

$$\Rightarrow P(x). P(y) = \begin{bmatrix} \cos x \cos y - \sin x \sin y & \sin y \cos x + \sin x \cos y \\ -\sin x \cos y - \cos x \sin y & -\sin x \sin y + \cos x \cos y \end{bmatrix}$$

$$\Rightarrow P(x). P(y) = \begin{bmatrix} \cos (x + y) & \sin (x + y) \\ -\sin (x + y) & \cos (x + y) \end{bmatrix} = P(x + y)$$

Now,

$$P(y). P(x) = \begin{bmatrix} \cos y & \sin y \\ -\sin y & \cos y \end{bmatrix} \begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix}$$

$$\Rightarrow P(y). P(x) = \begin{bmatrix} \cos y \cos x - \sin y \sin x & \sin x \cos y + \sin y \cos x \\ -\sin y \cos x - \cos y \sin x & -\sin y \sin x + \cos y \cos x \end{bmatrix}$$

$$\Rightarrow P(y). P(x) = \begin{bmatrix} \cos (x + y) & \sin (x + y) \\ -\sin (x + y) & \cos (x + y) \end{bmatrix} = P(x + y)$$

$$P(x), P(y) = P(x + y) = P(y). P(x)$$

Q71

if
$$P = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$$
 and $Q = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$, Prove that $PQ = \begin{bmatrix} xa & 0 & 0 \\ 0 & yb & 0 \\ 0 & 0 & zc \end{bmatrix}$
Solution

We have,
$P = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}, Q = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$
So, $PQ = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$
$ = \begin{bmatrix} x \times a & 0 & 0 \\ 0 & y \times b & 0 \\ 0 & 0 & z \times c \end{bmatrix} $
$ = \begin{bmatrix} xa & 0 & 0 \\ 0 & yb & 0 \\ 0 & 0 & zc \end{bmatrix} $
and $QP = \begin{bmatrix} 0 & b & 0 & 0 & y & 0 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} a \times x & 0 & 0 \\ 0 & b \times y & 0 \\ 0 & 0 & c \times z \end{bmatrix}$ = $\begin{bmatrix} ax & 0 & 0 \\ 0 & by & 0 \\ 0 & 0 & zc \end{bmatrix}$ as, $xa = ax$, $yb = by$, $zc = cz$
$= \begin{bmatrix} ax & 0 & 0 \\ 0 & by & 0 \\ 0 & 0 & zc \end{bmatrix}$
as, xa = ax , yb = by , zc = cz
Q72 $\begin{bmatrix} 0 & 0 & 2c \end{bmatrix}$ as, xa = ax, yb = by, zc = cz $PQ = \begin{bmatrix} xa & 0 & 0 \\ 0 & yb & 0 \\ 0 & 0 & zc \end{bmatrix} = QP.$
Q72 Saliti

If
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$
, find $A^2 - 5A + 4I$ and hence find a matrix X such that $A^2 - 5A + 4I + X = 0$.

Ch 5 – Algebra of Matrices

```
We have,
       A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}
 Then,
              A^{2} = A \cdot A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 2 \times 2 + 0 \times 2 + 1 \times 1 & 2 \times 0 + 0 \times 1 + 1 \times -1 & 2 \times 1 + 0 \times 3 + 1 \times 0 \\ 2 \times 2 + 1 \times 2 + 3 \times 1 & 2 \times 0 + 0 \times 1 + 1 \times -1 & 2 \times 1 + 1 \times 3 + 3 \times 0 \\ 1 \times 2 + -1 \times 2 + 0 \times 1 & 1 \times 0 + -1 \times 1 + 0 \times -1 & 1 \times 1 + -1 \times 3 + 0 \times 0 \end{bmatrix}, 
                       -5A = \begin{bmatrix} -10 & 0 & -5 \\ -10 & -5 & -15 \\ -5 & 5 & 0 \end{bmatrix}, \quad 4I = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}
Hence, A^2-5A+4I = \begin{bmatrix} 5 & -1 & 5 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{bmatrix} + \begin{bmatrix} -10 & 0 & -5 \\ -10 & -5 & -15 \\ -5 & 5 & 0 \end{bmatrix} + \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}
                                                   [5-10+4 -1+0+0 5-5+0]
                                                                                         A<sup>2</sup>-5A+4I = 9-10+0 -2-5+4 5-15+0
                                                   0-5-0 -1+5+0 -2+0+4
                                                 = \begin{bmatrix} -1 & -1 & -3 \\ -1 & -3 & -10 \\ -5 & 4 & 2 \end{bmatrix}
Now, given is A2-5A+4I+X=O
    \Rightarrow X = -(A<sup>2</sup>-5A+4I)
                                [-1 -1 -3]
               X = - -1 -3 -10
                                 -5 4 2
                                 [1 1 3]
              X = 1 3 10
                                  5 4 2
Q73
  If A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, prove that A^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} for all positive integers n.
```

Ch 5 – Algebra of Matrices

```
Given,
            A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}
 To prove A'' = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} we will use the principle of mathematical induction.
 Step 1: Put n = 1
            A^1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}
 S0,
             A^n is true for n = 1
 Step 2: Let, A^n be true for n = k, then
            A^k = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}
                                                                                      ---(i)
Step 3: We have to show that A^{k+1} = \begin{bmatrix} 1 & k+1 \\ 0 & 1 \end{bmatrix}
                                                                                                               Hisch away
 So,
            A^{k+1} = A^k \times A
            = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}
                                                           {using equation (i) and given}
            = \begin{bmatrix} 1+0 & 1+k \\ 0+0 & 0+1 \end{bmatrix}
A^{k+1} = \begin{bmatrix} 1 & 1+k \\ 0 & 1 \end{bmatrix}
 This shows that A^n is true for n = k + 1 whenever it is true for n = k + 1
Hence, by the principle of mathematical induction A" is true for all positive integer.
                                                                            He Le
Q74
  If A = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}, prove that A^n = \begin{bmatrix} a^n & b(a^n - 1) \\ a^n & 1 \end{bmatrix}
                                                                                  for every positive integer n.
```

Ch 5 – Algebra of Matrices

Given, $A = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$ To prove $A^n = \begin{bmatrix} a^n & \frac{b(a^n - 1)}{a - 1} \\ 0 & 1 \end{bmatrix}$ we will use the principle of mathematical induction. Step 1: Put n = 1 $A^{1} = \begin{bmatrix} a^{1} & \frac{b(a^{1}-1)}{a-1} \\ 0 & 1 \end{bmatrix}$ $A = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$ So, A^n is true for n = 1Step 2: Let, A^n is true for n = k, so, $A^{k} = \begin{bmatrix} a^{k} & \frac{b(ak-1)}{a-1} \\ 0 & 1 \end{bmatrix}$ Jusing equation (i) and given ----(i) Step 3: We have to show that $A^{k+1} = \begin{bmatrix} a^{k+1} & \frac{b(a^k - 1)}{a - 1} \end{bmatrix}$ Now, $A^{k+1} = A^k \times A$ $-\begin{bmatrix} a^k & \frac{b(a^k-1)}{a-1} \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} a^{k+1} + 0 & a^{k}b + \frac{b(a^{k} - 1)}{a - 1} \\ 0 + 0 & 0 + 1 \end{bmatrix}$ $= \begin{bmatrix} a^{k+1} & \frac{a^{k+1}b - a^{k}b + a^{k}b - b}{a - 1} \\ 0 & 1 \end{bmatrix}$ $A^{k+1} = \begin{bmatrix} a^{k+1} & b(a^{k+1}-1) \\ a-1 \end{bmatrix}$ So, A^n is true for n = k + 1 whenever it is true n = k.

Hence, by principle of mathematical induction Aⁿ is true for all positive integer n.

Q75

```
If A = \begin{bmatrix} \cos\theta & i \sin\theta \\ i \sin\theta & \cos\theta \end{bmatrix}, then prove by principle of mathematical induction that A^n = \begin{bmatrix} \cos n\theta & i \sin n\theta \\ i \sin n\theta & \cos n\theta \end{bmatrix} for all n \in N.
```

Solution

```
Given.
                     A = \begin{bmatrix} \cos\theta & i\sin\theta\\ i\sin\theta & \cos\theta \end{bmatrix}
 To show that,
                     A^n = \begin{bmatrix} \cos n\theta & i \sin n\theta \\ i \sin n\theta & \cos n\theta \end{bmatrix} \text{ for all } n \in N.
Put n = 1
                     A^{1} = \begin{bmatrix} \cos\theta & i \sin\theta \\ i \sin\theta & \cos\theta \end{bmatrix}
 So,
                     A^n is true for n = 1
               A^n is true for n = k, so
Let,
                     A^{k} = \begin{bmatrix} \cos k\theta & i \sin k\theta \\ i \sin k\theta & \cos k\theta \end{bmatrix}
                                                                                                                                             ----(i)
                                                                                                                                                                                   Hisch away
Now, we have to show that,
                     A^{k+1} = \begin{bmatrix} \cos(k+1)\theta & i\sin(k+1)\theta \\ i\sin(k+1)\theta & \cos(k+1)\theta \end{bmatrix}
Now, A^{k+1} = A^k \times A
                     = \begin{bmatrix} \cos k\theta & i \sin k\theta \\ i \sin k\theta & \cos k\theta \end{bmatrix} \begin{bmatrix} \cos \theta & i \sin \theta \\ i \sin \theta & \cos k\theta \end{bmatrix} \begin{bmatrix} i \sin \theta & \cos \theta \end{bmatrix}
                     \left[\cos k\theta \cos \theta + i^{2} \sin k\theta \sin \theta + i^{2} \cos k\theta \sin \theta + i \sin k\theta \cos \theta\right]
                          i \sin k\theta \cos \theta + i \cos k\theta \sin \theta i^2 \sin k\theta \sin \theta + \cos \theta \cos k\theta
                      = \begin{bmatrix} \cos k\theta \cos \theta - \sin k\theta \sin \theta & i (\cos k\theta \sin \theta + \sin k\theta \cos \theta) \\ i (\sin k\theta \cos k\theta \sin \theta) & \cos k\theta \cos \theta - \sin k\theta \sin \theta \end{bmatrix} 
                     = \begin{bmatrix} \cos(k+1)\theta & i\sin(k+1)\theta \\ i\sin(k+1)\theta & \cos(k+1)\theta \end{bmatrix}
```

So, A^n is true for n = k + 1 whenever it is true for n = k.

Hence, By principle of mathematical induction A" is true for all positive integer.

Q76

If
$$A = \begin{bmatrix} \cos \alpha + \sin \alpha & \sqrt{2} \sin \alpha \\ -\sqrt{2} \sin \alpha & \cos \alpha - \sin \alpha \end{bmatrix}$$
, prove that
$$A^{n} = \begin{bmatrix} \cos n\alpha + \sin n\alpha & \sqrt{2} \sin n\alpha \\ -\sqrt{2} \sin n\alpha & \cos \alpha - \sin n\alpha \end{bmatrix}$$
 for all $n \in N$.

Ch 5 – Algebra of Matrices

Given, $A = \begin{bmatrix} \cos \alpha + \sin \alpha & \sqrt{2} \sin \alpha \\ -\sqrt{2} \sin \alpha & \cos \alpha - \sin \alpha \end{bmatrix}$ To prove P(n): $A^n = \begin{bmatrix} \cos n\alpha + \sin n\alpha & \sqrt{2} \sin n\alpha \\ -\sqrt{2} \sin n\alpha & \cos n\alpha - \sin n\alpha \end{bmatrix}$ we use mathematical induction. Step 1: To show P(1) is true. A^n is true for n = 1Step 2: Let, P(k) be true, so $A^{k} = \begin{bmatrix} \cos k\alpha + \sin k\alpha & \sqrt{2} \sin k\alpha \\ -\sqrt{2} \sin k\alpha & \cos k\alpha - \sin k\alpha \end{bmatrix}$ ---(i) Step 3: Let, P(k) is true. Now, we have to show that $\mathcal{A}^{k+1} = \begin{bmatrix} \cos\left(k+1\right)\alpha + \sin\left(k+1\right)\alpha & \sqrt{2}\sin\left(k+1\right)\alpha \\ -\sqrt{2}\sin\left(k1\right)\alpha & \cos\left(k+1\right)\alpha - \sin\left(k+1\right)\alpha \end{bmatrix}$ Now, away $A^{k+1} = A^k \times A$ _ cos ka + sinka √2 sinka ∏cos a + sina √2 sina $-\sqrt{2}$ sinka coska - sinka $-\sqrt{2}$ sina cosa - sina (∞ska+sinka)√2 sina +√2 sin (cos kα + sin kα)(cos α + sin α) - 2 sin α sin kα $+\sqrt{2} \sin k\alpha (\cos \alpha - \sin \alpha)$ -2 sinka sina + (coska - sinka) $(\cos \alpha + \sin \alpha) \left(-\sqrt{2} \sin k\alpha \right) - \sqrt{2} \sin \alpha (\cos k\alpha - \sin k\alpha)$ (ωsα - sinα) $\cos ka \cos \alpha + \sin ka \cos \alpha + \cos ka \sin \alpha$ $\sqrt{2} \cos ka \sin \alpha + \sqrt{2} \sin \alpha \sin k\alpha +$ $+\sin\alpha\sin k\alpha - 2\sin\alpha\sin k\alpha$ √2 sinka cos a - √2 sinka sina -√2 cos α sinα - √2 sinα sinkα - √2 sinα -2 sinkα sinα + cos kα cosα - cosα sinka – sina coska sina sinka cos ka + √2 sina sin ka $\cos \alpha \cos k \alpha + \sin \alpha \sin k \alpha$ $\sqrt{2} (\sin k \alpha \cos \alpha + \cos k \alpha \sin \alpha)$ $\sin \alpha \cos k \alpha + \sin k \alpha \cos \alpha$ $\sqrt{2}$ (sinka cos a + cos ka sin a) $\cos ka \cos a - \sin ka \sin a - \cos ka \sin a$ (sin kα cosα + sinα cos kα) $\begin{bmatrix} \cos(k+1)\alpha + \sin(k+1)\alpha & \sqrt{2}\sin(k+1)\alpha \\ -\sqrt{2}\sin(k+1)\alpha & \cos(k+1)\alpha - \sin(k+1)\alpha \end{bmatrix}$

So, P(k + 1) is true whenever P(k) is true.

Hence, by principle of mathematical induction P(n) is true for all positive integer.

Q77

If A =
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
, then use the principle of mathematical inductin to show that
Aⁿ = $\begin{bmatrix} 1 & n & n(n+1)/2 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{bmatrix}$ for every positive integer n.

Ch 5 – Algebra of Matrices

Given, $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ To prove, $A^n = \begin{bmatrix} 1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{bmatrix}$, we will use the principle of mathematical induction. Step 1: Put n = 1 $A^{1} = \begin{bmatrix} 1 & 1 & \frac{1(1+1)}{2} \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ So, A^n is true for n = 1Step 2: Let, A^n be true for n = k, so, $A^{k} = \begin{bmatrix} 1 & k & \frac{k(k+1)}{2} \\ 0 & 1 & (k+1) \\ 0 & 0 & 1 \end{bmatrix}$ Step 3: We will prove that A^n be true for n = k + 1Now, $A^{k+1} = A^k \times A$ $= \begin{bmatrix} 1 & k & \frac{k(k+1)}{2} \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix}$ using equation (i) and given} 1+0+0 1+k+0 1+k+ 0+0+0 0+1+0 0+1+k0+0+0 0+0+00 + 0 + 1 $= \begin{bmatrix} 1 & (k+1) & \frac{(k+1)(k+2)}{2} \\ 0 & 1 & (k+1) \\ 0 & 0 & 1 \end{bmatrix}$

Hence, A^n is true for n = k + 1 whenever it is true for n = k. So, by principle of mathematical induction A^n is true for all positive integer n.

Q78

If B,C are n rowed square matrices and if A = B + C, BC = CB, $C^2 = 0$, then show that for every $n \in N$, $A^{n+1} = B^n \left(B + (n+1)C \right)$.

Ch 5 – Algebra of Matrices

Solution

We will prove P(n): $A^{n+1} = B^n [B + (n+1)C]$ is true for all natural numbers using mathematical induction.

Given,

A = B + C, BC = CB, C² = 0A = B + C

Squaring both the sides, so

$$A^2 = (B + C)^2$$

$$\Rightarrow A^2 = (B + C)(B + C)$$

 $\Rightarrow A^2 = B \times B + BC + CB + C \times C$

$$\Rightarrow A^2 = B^2 + BC + BC + C^2$$

$$\Rightarrow A^2 = B^2 + 2BC + 0$$

$$\Rightarrow A^2 = B^2 + 2BC ----(1)$$

 $A^2 = B(B + 2C)$

Now, consider

$$P(n): A^{n+1} = B^n [B + (n+1)C]$$

Step 1: Tp prove P(1) is true, put n = 1

 $A^{1+1} = B^{1} [B + (1+1)C]$ $A^{2} = B [B + 2C]$ $A^{2} = B^{2} + 2BC$

From equation (i), P(1) is true.

Step 2: Suppose P(k) is true. $A^{k+1} = B^{k} [B + (k+1)C]$ ----(2)

Step 3: Now, we have to show that P(k+1) is true.

That is we need to prove that,

$$A^{k+2} = B^{k+1} [B + (k+2)C]$$

Now,

$$\begin{aligned} A^{k+2} &= A^{k} \times A^{2} \\ &= B^{(k-1)} [B + kC] \times [B (B + 2C)] \\ &= B^{k} [B + kC] \times [B + 2C] \\ &= B^{k} [B \times B + B \times 2C + kC \times B + 2kC^{2}] \\ &= B^{k} [B^{2} + 2BC + kBC + 2k \times 0] \\ &= B^{k} [B^{2} + BC (2 + k)] \\ &= B^{k} \times B [B + (k + 2)C] \\ &= B^{k+1} [B + (k + 2)C] \end{aligned}$$

So, P(n) is true for n = k + 1 whenever P(n) is true for n = k

Therefore by principle of mathematical induction P(n) is true for all natural number.

{using distributive property} {using BC = CB given} {since, given C² = 0} ---(1)

Ch 5 – Algebra of Matrices

Q79

If A = diag(a, b, c), show that $A^n = \text{diag}(a^n, b^n, c^n)$ for all positive integer n.

Solution

```
Given,
              A = diag(a, b, c)
Show that,
              A^n = diag(a^n, b^n, c^n)
Step 1: Put n = 1
              A^1 = \operatorname{diag}\left(a^1, b^1, c^1\right)
              A = diag(a, b, c)
So,
              A^n is true for n = 1
                                                                                                                    {using equation (i) and given}
Step 2: Let, A^n be true for n = k, so,
              A^k = \operatorname{diag}\left(a^k, b^k, c^k\right)
                                                                                        ----(i)
Step 3: Now, we have to show that,
              A^{k+1} = diag(a^{k+1}, b^{k+1}, c^{k+1})
Now,
              A^{k+1} = A^k \times k3
                        = diag(a^k, b^k, c^k) \times diag(a, b, c)
              A^{k+1} = \begin{bmatrix} a^k & 0 & 0 \\ 0 & b^k & 0 \\ 0 & 0 & c^k \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c^k \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}
                       = \begin{bmatrix} a^k \times a + 0 + 0 & 0 + 0 + 0 & 0 + 0 + 0 \\ 0 + 0 + 0 & 0 + b^k \times b + 0 & 0 + 0 + 0 \\ 0 + 0 + 0 & 0 + 0 + 0 & 0 + 0 + c^k \times c \end{bmatrix}
                       = \begin{bmatrix} a^{k+1} & 0 & 0 \\ 0 & b^{k+1} & 0 \\ 0 & 0 & c^{k+1} \end{bmatrix}
A^{k+1} = diag[a^{k+1}, b^{k+1}, c^{k+1}]
```

So, P(n) is true for n = k + 1 whenever P(n) is true for n = k.

Hence, by principle of mathematical induction A[®] is true for all positive integer.

Q80

A matrix X has a+b rows a+2 columns the matrix Y has b+1 rows and a+3 columns. Both matrices XY and XY exist. Find a and b. Can you say XY and YX are of the same type? Are they equal.

```
Given,
          order of matrix X = (a+b) \times (a+2)
          order of matrix \mathcal{V} = (b+1) \times (a+3)
Given,
                    \chi_{(\mathfrak{s}+\delta) \times (\mathfrak{s}+2)} \chi_{(\delta+1) \times (\mathfrak{s}+3)} \text{ exist.}
=
          a+2=b+1
=
          a - b = -1
                                                  ----(i)
And
                    Y_{(b+1)\times(a+3)}, X_{(a+b)\times(a+2)} exists.
          a+3=a+b
\Rightarrow
          b = 3
\Rightarrow
Put b = 3 in equation (i),
          a - b = -1
          a-3=-1
          2 = 3 - 1
          3=2
          a=2, b=3
So,
So,
Order of X = (a+b) \times (a+2)
          = (2+3) \times (2+2)
          = 5 × 4
Order of Y = (b+1) \times (a+3)
          - (3+1)×(2+3)
          = 4 x 5
Order of X_{5\times4},Y_{4\times5} = 5 \times 5
Order of X_{4\times5}Y_{5\times4} = 4\times4
```

order of XY and YX are not same and they are not equal oth are source matrices he textb So, but both are square matrices.

Q81

Give an example of matrices: A and B such that $AB \neq BA$

Ch 5 – Algebra of Matrices

Let,
$$A = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}, B \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0+0 & ab+0 \\ 0+0 & 0+0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & ab \\ 0 & 0 \end{bmatrix} \qquad ----(i)$$
$$BA = \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0+0 & 0+0 \\ 0+0 & 0+0 \end{bmatrix}$$
$$BA = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
From equation (i) and (ii)
$$AB \neq BA$$

Q82

Solution

	AB ≠ BA
when	$A = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}$
Q82	C. and
Given	an example of matrices A and B such that $AB = 0$ but $A \neq 0$, $B \neq 0$
Soluti	on Alfan
Let,	$A = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \neq 0$
	$A = \begin{bmatrix} 0 & 0 \end{bmatrix} \neq 0$ $B = \begin{bmatrix} 0 + 0 & 0 + 0 \\ 0 + 0 & 0 + 0 \end{bmatrix}$
AB	$ = \begin{bmatrix} 0 + 0 & 0 + 0 \\ 0 + 0 & 0 + 0 \end{bmatrix} $
Hence	
	AB = 0

```
AB = 0
When,
```

 $A = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \neq 0$ $B = \begin{bmatrix} 0 & 0 \\ 0 & b \end{bmatrix} \neq 0$

Q83

Give an example of matrices A and B such that AB = O but $BA \neq 0$.

Let,	$A = \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} b & 0 \\ 0 & 0 \end{bmatrix}$
AB	$= \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix} \begin{bmatrix} b & 0 \\ 0 & 0 \end{bmatrix}$
	$= \begin{bmatrix} 0 + 0 & 0 + 0 \\ 0 + 0 & 0 + 0 \end{bmatrix}$
	$ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} $
AB	= 0
ВA	$= \begin{bmatrix} b & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}$
	$= \begin{bmatrix} 0+0 & ab+0\\ 0+0 & 0+0 \end{bmatrix}$
	$= \begin{bmatrix} 0 & ab \\ 0 & 0 \end{bmatrix}$
	$BA \neq 0$

Hence,

for AB = 0 and $BA \neq 0$ we have,

4 -	ΓΟ	a]	<i>p</i>	ΓЬ	0]
A =	lo	0]'	0 =	lo	oj

Q84

Hillsch away

```
Given an example of matrices A, B and C such that AB = AC but B \neq C, A \neq 0.

Solution

Let, A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}, c = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}

Here,

A \neq 0, B \neq C
```

$A \neq 0, B \neq 0$	2
[1 0][0 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
[0 0][-1 0	oj ⁻ lo ojlo ij
0+0 0+0	0+0 0+0
0+0 0+0	$\begin{bmatrix} 0 + 0 & 0 + 0 \\ 0 + 0 & 0 + 0 \end{bmatrix}$
0] [0 0]	0]
$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0

LHS = RHS

So,

for $A \neq 0$, $BC \neq 0$ but AB = ACWe have, $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Ch 5 – Algebra of Matrices

Let A and B be square matrices of the same order. Does $(A+B)^2 = A^2 + 2AB + B^2$ hold? If not, why?

Solution

Given,

A and B are square matices of same order

$$(A + B)^{2} = (A + B)(A + B)$$
$$= A(A + B) + B(A + B)$$
$$= A \times A + AB + BA + B^{2}$$
$$= A^{2} + AB + BA + B^{2}$$

{using distributive property}

But,

(A

 $(A + B)^2 = A^2 + 2AB + B^2$ is possible only when AB = BA

Here, we can not say that AB = BA

So,

 $(A+B)^2 = A^2 + 2AB + B^2$ does not hold.

Q86

Klitch away If A and B are square matrices of the same order, explain, why in general (i) $(A+B)^2 \neq A^2 + 2AB + B^2$ (ii) $(A-B)^2 \neq A^2 - 2AB + B^2$ (iii) $(A+B)(A-B) \neq A^2 - B^2$.

Ch 5 – Algebra of Matrices

Given, A and B are square matrices of same order.

(i)
$$(A+B)^2 = (A+B)(A+B)$$

= $A(A+B) + B(A+B)$ {using distributive property}
= $A \times A + AB + BA + B \times B$
= $A^2 + AB + BA + B^2$
 $\neq A^2 + 2AB + B^2$

Since, in general matix multiplication is not commutative $(AB \neq BA)$

So,
$$(A+B)^2 \neq A^2 + 2AB + B^2$$

(ii)
$$(A - B)^2 = (A - B)(A - B)$$

 $= A(A - B) - B(A - B)$
 $= A \times A - AB - BA + B \times B$
 $= A^2 - AB - BA + B^2$
 $\neq A^2 - 2AB + B^2$

{using distributive property} .

ising distributive property}

Since, in general matrix multiplication is not commutative $(AB \neq BA)_1$, so So, $(A - B)^2 \neq A^2 - 2AB + B^2$

(iii)
$$(A+B)(A-B) = A(A-B) + B(A-B)$$

= $A \times A - AB + BA - B \times B$
= $A^2 - AB + BA - B^2$
= $A^2 - B^2$

Since, in general matix multiplication is not commutative ($AB \neq BA$), So, $(A+B)(A-B) \neq A^2 - B^2$ Q87

Q87

Let A and B be square matrices of the order 3×3 . Is $(AB)^2 = A^2 B^2$? Give reasons.

Ch 5 – Algebra of Matrices

The given equality is true only when we choose A and B to be a square matrix in such a way that AB = BA else the result is not true in general.

```
1 0 0
                                 [0 1 0]
Example: Let A = 1 1 0 and B = 2 1 0
               0 0 1
                                 001
          [1 0 0][0 1 0]
Here AB = 1 1 0 2 1 0
          0 0 1 0 0 1
          [1x0+0x2+0x0 1x1+0x1+0x0 1x0+0x0+0x1]
       = 1 \times 0 + 1 \times 2 + 0 \times 0 \quad 1 \times 1 + 1 \times 1 + 0 \times 0 \quad 1 \times 0 + 1 \times 0 + 0 \times 1
          0x0+0x2+ix0 0xi+0xi+ix0 0x0+0x0+ixi
         [0 1 0]
        = 1 2 0
         001
         [0 1 0][1 0 0]
                                                       ICK away
and BA = 2 1 0 1 1 0
         001001
         [0x1+1x1+0x0 0x0+1x1+0x0 0x0+1x0+0x1]
       = 2x1+1x1+0x0 2x0+1x1+0x0 2x0+1x0+0x1
         0x1+0x1+1x0 0x0+0x1+1x0 0x0+0x0+1x1
                                        Abooks, N
         [1 1 0]
       = 2 1 0
         001
     AB ≠BA
           0 1 0 0 1 0
                   1 2 0
Now, (AB)^2 = 1 2 0
            001
                    0 0
                          1
           [0x0+1x1+0x0 0x1+1x2+0x0 0x0+1x0+0x1]
          = 1 \times 0 + 2 \times 1 + 0 \times 0 1 \times 1 + 1 \times 2 + 0 \times 0 1 \times 0 + 2 \times 0 + 0 \times 1
           0x0+0x1+1x0 0x1+0x2+1x0 0x0+0x0+1x1
           [1 2 0]
          = 2 5 0
           001
```


Q88

If A and B be square matrices of the same order such that AB = BA, then show that $(A + B)^2 = A^2 + A^2$ 2AB + B².

Ch 5 – Algebra of Matrices

Given,

A and B two square matrices of same order such that AB = BA. To prove : (A+B)² = A² + 2AB + B² Now, solving LHS gives, $(A+B)^{2} = (A + B)(A+B)$ = A(A+B) + B(A+B) [by dist. of matrix multiplication] over addition [by dist. of matrix multiplication] $= A^2 + AB + BA + B^2$ over addition

[As, AB = BA]

Hence proved.

Q89

Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 3 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 1 \\ 5 & 2 \\ -2 & 4 \end{bmatrix}$ and $C = \begin{bmatrix} 4 & 2 \\ -3 & 5 \\ 5 & 0 \end{bmatrix}$
Verify that $AB = AC$ though $B \neq C$, $A \neq 0$.

= RHS

 $= A^2 + 2AB + B^2$

Solution

Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 3 & 3 \end{bmatrix}, B = \begin{bmatrix} 3 & 1 \\ -2 & 4 \end{bmatrix}$$
 and $C = \begin{bmatrix} 4 & 2 \\ -3 & 5 \\ 5 & 0 \end{bmatrix}$
Verify that $AB = AC$ though $B \neq C$, $A \neq 0$.
Solution
Given, $A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 3 & 3 \end{bmatrix}, B = \begin{bmatrix} 3 & 2 \\ -2 & 4 \end{bmatrix}, C = \begin{bmatrix} 4 & 2 \\ -3 & 5 \\ -2 & 4 \end{bmatrix}$
 $AB = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 3 & 3 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ -2 & 4 \end{bmatrix}$
 $AB = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 3 & 3 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ -2 & 4 \end{bmatrix}$
 $AB = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 3 & 3 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ -2 & 4 \end{bmatrix}$
 $AB = \begin{bmatrix} 1 & 1 & 1 \\ -3 & 5 & 2 \end{bmatrix}$
 $AB = \begin{bmatrix} 1 & 1 & 1 \\ -3 & 5 & 2 \end{bmatrix} = (1 - 3 - 5)$
 $AC = \begin{bmatrix} 1 & 1 & 1 \\ -3 & 5 & 2 \end{bmatrix} = (1 - 3 - 5)$
 $AC = \begin{bmatrix} 1 & 1 & 1 \\ -3 & 5 & 2 \end{bmatrix}$
 $AC = \begin{bmatrix} 6 & 7 \\ 18 & 21 \end{bmatrix} = (-6)$
 $AC = \begin{bmatrix} 6 & 7 \\ 18 & 21 \end{bmatrix} = (-6)$
 $AC = \begin{bmatrix} 6 & 7 \\ 18 & 21 \end{bmatrix} = (-6)$
From equation (i) and (ii)
 $AB = AC$

Q90

Ch 5 – Algebra of Matrices

Three shopkeepers *A*, *B* and *C* go to a store to buy stationary. *A* purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. *B* purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. *C* purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.

Solution

The number of items purchased by A, B and C are represented in matrix form as,

	Notebook		Pens	Pencils
	A	144	60	72
X =	B	120	72	84
	C	132	156	5 96

Now, matrix formed by the cost of each items is given by,

Now, matri	x forme	d by the c	cost of ear	ch items is	given by,		- A	
	[0.40]N	lote book						
Y =	1.25	Pen						
	0.35	Penal					6.	Sec. 1
Individual l	bill can b	se calcula	ted by					103
	[144	60 72]	[0.40]					
XY	= 120	72 84	1.25				10	
	132	60 72 72 84 156 96	0.35		- 6 \ 1			
	57.6	0+75.00	+25.20]					
XY	= 48.0	0 + 90.00	+ 29.40				here	
	52.80	+ 195.00	+33.60		1.1	1.65	\$	
	[157.8	100	1	. March		Aller		
XY	= 167.4					01		
	281.4	10			▼XQ			
	19000-00				and the second s			
So,					K.S.			
	of $A = R$	s 157.80	-					
Bill	of $B = R$	s 167.40						
Bill	of C = R	s 281.40						
			4	T				

Q91

The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.

Ch 5 – Algebra of Matrices

Matrix representation of stock of various types of book in the store is given by,

Physics **Mathematics** Chemistry X = 120 96 60]

Matrix representation of sellin price (Rs.) of each book is given by

Physics 8.30] 3.45 Chemistry 4.50 Mathematics

So, totaol amount recieved by the store from sellin all the items is given by,

$$XY = \begin{bmatrix} 120 & 96 & 60 \end{bmatrix} \begin{bmatrix} 8.30 \\ 3.45 \\ 4.50 \end{bmatrix}$$
$$= \begin{bmatrix} (120)(8.30) + (96)(3.45) + (60)(4.50) \end{bmatrix}$$
$$= \begin{bmatrix} 996 + 331.20 + 270 \end{bmatrix}$$
$$= \begin{bmatrix} 1597.20 \end{bmatrix}$$

Required amount = Rs 1597.20

Q92

Alack away In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways; telephone, house calls and letters. The cost per contact (in paise) is given matrix A as

cost per contact 40] [Telephone] A = 100 House call 50 Letter

The number of contacts of each type made in two cities X and Y is given in matrix 8 as

Telephone Housecall Letter 1000 500 5000]→ X B = 3000 1000 10000 → Y

Ch 5 – Algebra of Matrices

Given,

The cost per contact (in paise) is given by

40][Telephone] A = 100 Housecall Letter 50

The number of contact of each type made in two cities X and y is given by.

Telephone Housecall Letter 1000 500 5000 B = 3000 1000 10000

Total amount spent by the group in the two cities X and y can be given by

```
40
                  5000 ]
    [1000 500
BA =
                         100
     3000 1000
                  10000
                         50
   40000 + 50000 + 250000
  120000 + 100000 + 500000
 [340000]X
  720000
```

Hence,

Amount spend on X = Rs 3400 Amount spend on Y = Rs 7200

Q93

A trust fund has Rs 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of: Same

(a) Rs 1,800 (b) Rs 2,000

Ch 5 – Algebra of Matrices

(a) Let Rs x be invested in the first bond. Then, the sum of money invested in the second bond will be Rs (30000 - x).

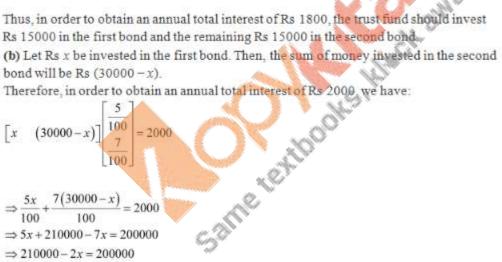
It is given that the first bond pays 5% interest per year and the second bond pays 7% interest per year.

Therefore, in order to obtain an annual total interest of Rs 1800, we have:

$$\begin{bmatrix} x \quad (30000 - x) \end{bmatrix} \begin{bmatrix} \frac{5}{100} \\ \frac{7}{100} \end{bmatrix} = 1800 \qquad \begin{bmatrix} \text{S.L for 1 year} = \frac{\text{Principal} \times \text{Rate}}{100} \end{bmatrix}$$
$$\Rightarrow \frac{5x}{100} + \frac{7(30000 - x)}{100} = 1800$$
$$\Rightarrow 5x + 210000 - 7x = 180000$$
$$\Rightarrow 210000 - 2x = 180000$$

 $\Rightarrow 2x = 210000 - 180000$ $\Rightarrow 2x = 30000$

$$\Rightarrow x = 15000$$



Therefore, in order to obtain an annual total interest of Rs 2000, we have: $\begin{bmatrix} 5 \end{bmatrix}$

$$\begin{bmatrix} x & (30000 - x) \end{bmatrix} \begin{bmatrix} \frac{5}{100} \\ \frac{7}{100} \end{bmatrix} = 2000$$
$$\Rightarrow \frac{5x}{100} + \frac{7(30000 - x)}{100} = 2000$$

$$\Rightarrow 5x + 210000 - 7x = 200000$$

 $\Rightarrow 210000 - 2x = 200000$

 $\Rightarrow 2x = 210000 - 200000$

$$\Rightarrow 2x = 10000$$

 $\Rightarrow x = 5000$

Thus, in order to obtain an annual total interest of Rs 2000, the trust fund should invest Rs 5000 in the first bond and the remaining Rs 25000 in the second bond

Q94

Ch 5 – Algebra of Matrices

To promote making of toilets for women, an organization tried to generate awareness through (i) house calls (ii) letters and (iii) announcements. The cost for each mode per attempt is given below:

i. Rs. 50

ii. Rs. 20 iii. Rs. 40

The number of attempts made in three villages X, Y, and Z are given below:

	(i)	(ii)	(iii)
Х	400	300	100
Y	300	250	75
Z	500	400	150

Find the total cost incurred by the organization for three villages separately, using matrices.

Solution

The cost for each mode per attempt is represented by 3 x 1 matrix:

	[400	300	100
В =	300	250	75
	500	400	150

$$A = \begin{bmatrix} 50\\ 20\\ 40 \end{bmatrix}$$
The number of attempts made in the three villages
X, Y, and Z are represented by a 3 x 3 matrix:

$$B = \begin{bmatrix} 400 & 300 & 100\\ 300 & 250 & 75\\ 500 & 400 & 150 \end{bmatrix}$$
The total cost incurred by the prganization for the three villages seperately is given by matrix multiplication

$$BA = \begin{bmatrix} 400 & 300 & 100\\ 300 & 250 & 75\\ 500 & 400 & 150 \end{bmatrix} \begin{bmatrix} 50\\ 20\\ 40 \end{bmatrix}$$

$$BA = \begin{bmatrix} 400 & 300 & 100\\ 300 & 250 & 75\\ 500 & 400 & 150 \end{bmatrix} \begin{bmatrix} 50\\ 20\\ 40 \end{bmatrix}$$

$$BA = \begin{bmatrix} 400 \times 50 + 300 \times 20 + 100 \times 40\\ 300 \times 50 + 250 \times 20 + 75 \times 40\\ 500 \times 50 + 400 \times 20 + 150 \times 40 \end{bmatrix}$$

$$= \begin{bmatrix} 30,000\\ 23,000\\ 39,000 \end{bmatrix}$$

Note: The answer given in the book is incorrect.

Q95

There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, Calculate the total requirement of calories and proteins for each of the families. What awareness can you create among people about the planned diet from this question?

Ch 5 – Algebra of Matrices

Let F be the family matrix and R be the requirement matrix. Then,

Women Children Men F = Family A[4 6 2 Family B 2 2 4 Calories Portein Men [2400 45] 1900 55 R = Women Children 1800 33

The requirement of calories and protein of each of the two families is given by the product matrix FR, as matrix F has number of columns equal to number of rows of R thus ,

> 2400 45 1900 55 1800 33 $FR = \begin{bmatrix} 4 & 0 \\ 2 & 2 \end{bmatrix}$ 4 $FR = \begin{bmatrix} 4 \times 2400 + 6 \times 1900 + 2 \times 1800 & 4 \times 45 + 6 \times 55 + 2 \times 33 \\ 2 \times 2400 + 2 \times 1900 + 4 \times 1800 & 2 \times 45 + 2 \times 55 + 4 \times 33 \end{bmatrix}$ HCK away Calories Protein FR = Family A 24600 Family B 15800 576 332

we can say that balanced diet having the required amount of calories and protein must be taken by each of the family,

Q96

In a parliament election, a political party hired a public relations firm to promote its candidates in three ways - telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as

140 Telephone 200 House calls Α = 150 Letters

The number of contacts of each type made in two cities X and Y is given in the matrix B as B = Telephone House calls Letters

[1000	500	5000 City X
3000	1000	10000]aty Y

Find the total amount spent by the party in the two cities.

What should one consider before casting his/her vote - party's promotional activity or their social activities?

Ch 5 – Algebra of Matrices

The cost per contact (in paisa) is given in matrix A as

[140] Telephone A= 200 House calls 150 Letters

The number of contacts of each type made in two cities X and Y is given in the matrix B as

Telephone House calls Letters

 $B = \frac{\text{City X}}{\text{City Y}} \begin{bmatrix} 1000\\ 3000 \end{bmatrix}$ 500 5000] 1000 10000

The total amout of money spent by party in each of the city for the election is given by the matrix multiplication :

$$BA = \begin{bmatrix} 1000 & 500 & 5000 \\ 3000 & 1000 & 10000 \end{bmatrix} \begin{bmatrix} 140 \\ 200 \\ 150 \end{bmatrix}$$
$$= \begin{bmatrix} 1000 \times 140 + 500 \times 200 + 5000 \times 150 \\ 3000 \times 140 + 1000 \times 200 + 10000 \times 150 \\ 000 \times 140 + 1000 \times 200 + 10000 \times 150 \end{bmatrix}$$
$$= \frac{\text{City X} \begin{bmatrix} 990000 \\ 2120000 \end{bmatrix}}{\text{City Y} \begin{bmatrix} 2120000 \\ 2120000 \end{bmatrix}}$$
$$= \frac{\text{City X} \begin{bmatrix} 9900 \\ 2120000 \end{bmatrix}}{\text{City Y} \begin{bmatrix} 21200 \\ 212000 \end{bmatrix}}$$
$$= \text{sould consider sodal activities before casting the vote to the party in the term of the$$

The total amout of money spent by party in each of the dity for the election in rupees is given by

> $=\left(\frac{1}{100}\right)^{Cl}_{Cl}$ ty X 990000 Cl y Y 2120000 _ City X[9900] City Y 21200

One sould consider social activities before casting his/her vote to the party.