Binary Operations Ex 3.5 Q1

 $a \times_4 b$ = the remainder when ab is divided by 4.

eg. (i)
$$2 \times 3 = 6 \Rightarrow 2 \times_4 3 = 2$$

[When 6 is divided by 4 we get 2 as remainder]

(ii)
$$2 \times 3 = 4 \Rightarrow 2 \times_4 2 = 0$$

[When 4 is divided by 4 we get 0 as remainder]

The composition table for \times_4 on set $S = \{0, 1, 2, 3\}$ is:

X4	0	1	2	3
0	0	0	9	0
1	0	1	2	US.
2	0	2	60°	2
3	0	3	2	1

Binary Operations Ex 3.5 Q 2

 $a +_5 b =$ the remainder when a + b is divided by 5.

eq.

 $2 + 4 = 6 \Rightarrow 2 +_5 4 = 1$ \(\tau\) [we get 1 as remainder when 6 is divided by 5]

 $2 + 4 = 7 \Rightarrow 3 +_5 4 = 2$

 $\sqrt{\text{we get 2 as remainder when 7 is divided by 5}}$

The composition table for $+_5$ on set $S = \{0, 1, 2, 3, 4\}$.

+5	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

Binary Operations Ex 3.5 Q3

 $a \times_6 b =$ the remainder when the product of ab is divided by 6.

The composition table for x_6 on set $S = \{0,1,2,3,4,5\}$.

			March.			
×6	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	З	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

 $a \times_5 b =$ the remainder when the product of ab is divided by 5.

The composition table for x_5 on $Z_5 = \{0, 1, 2, 3, 4\}$.

×5	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Binary Operations Ex 3.5 Q5

 $a \times_{10} b =$ the remainder when the product of ab is divided by 10.

The composition table for x_{10} on set $S = \{1, 3, 7, 9\}$

	5. 5 Q ! the pro		of ab i	s divid	ded by	10.
10	on set	t S = {	1, 3, 7, 9	9}		C. K. Zihil
	×10	1	3	7	9	a library
	1	1	3	7	9	1151
	3	3	9	1	17	.Hoo.
	7	7	1	9	3	
	9	9	~~7/ >>	3	l	

We know that an element $b \in S$ will be the inverse of $a \in S$

if
$$a \times_{10} b = 1$$

[∵ 1 is the identity element with] respect to multiplication

$$\Rightarrow$$
 3 \times_{10} b = 1

From the above table b = 7

Inverse of 3 is 7.

Binary Operations Ex 3.5 Q6

 $a \times_7 b =$ the remainder when the product of ab is divided by 7.

The composition table for x_7 on $S = \{1, 2, 3, 4, 5, 6\}$

		×7	1	2	3	4	5	6	
		1	1	2	3	4	5	6	
		2	2	4	6	1	3	5	
		3	3	6	2	5	1	4	
		4	4	1	5	2	6	3	10 ,
		5	5	3	1	6	4	2	C. C. Hall
		6	6	5	4	3	2	1	A CIL O
									lill a
We kn	now that 1 is the id	entity	eleme	nt wit	h resp	ect to	multip	olicatio	n
Also,	b will be the inv	/erse o	of a						
if,	$a \times_7 b = e = 1$						e K		
⇒	$3 \times_7 b = 1$				C				
From	the above table 3×	₇ 5 = 1	•						
	, o-1 c								

$$\Rightarrow$$
 $3 \times_7 b = 1$

$$b = 3^{-1} = 5$$

Now,
$$3^{-1} \times_7 4 = 5 \times_7 4 = 6$$

Binary Operations Ex 3.5 Q7

 $a \times_{11} b =$ the remainder when the product of ab is divided by 11.

The composition table for \times_{11} on Z_{11}

×11	1	2	3	4	5	6	7	8	9	10	
1	1	2	3	4	5	6	7	8	9	10	
2	2	4	6	8	10	1	3	5	7	9	
3	3	6	9	1	4	7	10	3	5	8	
4	4	8	1	5	9	2	6	10	3	7	
5	5	10	4	9	3	8	2	7	1	6	
6	6	1	7	2	8	3	9	4	10	5	
7	7	3	10	6	2	9	5	1	8	4	
8	8	5	3	10	7	4	1	9	6	3	
9	9	7	5	3	1	10	8	6	4	2	
10	10	9	8	7	6	5	4	3	2	1	Will.
ove table 1 9 = 1 [: 1 is the identity element]											

From the above table

$$5 \times_{11} 9 = 1$$

 $[\cdot, 1]$ is the identity element

Inverse of 5 is 9.

Binary Operations Ex 3.5 Q8

$$Z_5 = \left\{0, 1, 2, 3, 4\right\}$$

a x_5 b = the remainder when the product of ab is divided by 5.

The composition table for x_5 on $Z_5 = \{0, 1, 2, 3, 4\}$

×5	0	1	2	ω	4
0	0	0	0	0	0
1	0	1	2	co	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	Э	2	1

b*o=o*b=e

Inverse of a = a

From the above table

$$a*a=a$$
, $b*b=b$, $c*c=c$ and $d*d=d$

b = be = ed = d

 $b^{-1} = b, c^{-1} = d, \text{ and } d^{-1} = c$

Not: σ⁻¹ does ont exist. Binary Operations Ex 3.5 Q10 Let $X = \{0, 1, 2, 3, 4, 5\}.$ The operation * on X is defined as:

$$\begin{cases} a+b & \text{if } a+b < 6 \end{cases}$$

$$a*b = \begin{cases} a+b & \text{if } a+b < 6\\ a+b-6 & \text{if } a+b \ge 6 \end{cases}$$
An element $e \in X$ is the identity element $e \in X$

An element $e \in X$ is the identity element for the operation *, if $a*e = a = e*a \forall a \in X$.

For
$$a \in X$$
, we observed that:

$$a*0 = a + 0 = a$$
 $[a \in X \Rightarrow a + 0 < 6]$
 $0*a = 0 + a = a$ $[a \in X \Rightarrow 0 + a < 6]$

$$\therefore a * 0 = a = 0 * a \ \forall a \in X$$

i.e.,

Thus, 0 is the identity element for the given operation *.

Thus, 0 is the identity element for the given operation *.

An element
$$a \in X$$
 is invertible if there exists $b \in X$ such that $a * b = 0 = b * a$.

An element
$$a \in X$$
 is invertible if there exists $b \in X$?
i.e.,
$$\begin{cases} a+b=0=b+a, & \text{if } a+b<6 \\ a+b-6=0=b+a-6, & \text{if } a+b\geq 6 \end{cases}$$

$$a = -b$$
 or $b = 6 - a$

But, $X = \{0, 1, 2, 3, 4, 5\}$ and $a, b \in X$. Then, $a \neq -b$. Therefore, b = 6 - a is the inverse of $a \in X$.

Hence, the inverse of an element
$$a \in X$$
, $a \neq 0$ is $6 - a$ i.e., $a^{-1} = 6 - a$.