EXERCISE NO: 2.4

Question 1:

Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

(i)
$$2x^3 + x^2 - 5x + 2; \frac{1}{2}, 1, 2$$

 $2x^3 + x^2 - 5x + 2; \frac{1}{2}, 1, -2$
(ii) $x^3 - 4x^2 + 5x - 2; 2, 1, 1$
Solution 1:
(i) $p(x) = 2x^3 + x^2 - 5x + 2$
Zeroes for this polynomial are $\frac{1}{2}, 1, -2$
 $p(\frac{1}{2}) = 2(\frac{1}{2})^3 + (\frac{1}{2})^2 - 5(\frac{1}{2}) + 2$
 $= \frac{1}{4} + \frac{1}{4} - \frac{5}{2} + 2$
 $= 0$
 $p(-2) = 2(-2)^3 + (-2)^2 - 5(-2) + 2$
 $= -16 + 4 + 10 + 2 = 0$
Therefore, $\frac{1}{2}, 1, \text{ and } -2$ are the zeroes of the given polynomial.
Comparing the given polynomial with $ax^3 + bx^2 + cx + d$, we obtain $b = 1, c = -5, d = 2$
We can take $\alpha = \frac{1}{2}, \beta = 1, y = -2$
 $\alpha + \beta + \gamma = \frac{1}{2} + 1 + (-2) = -\frac{1}{2} = \frac{-b}{a}$
 $\alpha\beta + \beta\gamma + \alpha\gamma = \frac{1}{2} \times 1 + 1(-2) + \frac{1}{2}(-2) = \frac{-5}{2} = \frac{c}{a}$

 $\alpha\beta\gamma = \frac{1}{2} \times 1 \times (-2) = \frac{-1}{1} = \frac{-(2)}{2} = \frac{-d}{a}$

Therefore, the relationship between the zeroes and the coefficients is verified.

a = 2,

(ii) $p(x) = x^3 - 4x^2 + 5x - 2$ Zeroes for this polynomial are 2, 1, 1 $p(2) = 2^3 - 4(2^2) + 5(2) - 2$ = 8 - 16 + 10 - 2 = 0 $p(1) = 1^3 - 4(1^2) + 5(1) - 2$ = 1 - 4 + 5 - 2 = 0Therefore, 2, 1, 1 are the zeroes of the given polynomial.

Comparing the given polynomial with $ax^3 + bx^2 + cx + d$, we obtain a = 1, b = -4, c = 5, d = -2.

Verification of the relationship between zeroes and coefficient of the given polynomial

Sum of zeroes $=2+1+1=4=\frac{-(-4)}{1}=\frac{-b}{a}$

Multiplication of zeroes taking two at a time = (2)(1) + (1)(1) + (2)(1)

 $=2+1+2=5=\frac{(5)}{1}=\frac{c}{a}$

Multiplication of zeroes = $2 \times 1 \times 1 = 2 = \frac{-(-2)}{2}$

Hence, the relationship between the zeroes and the coefficients is verified.

Question 2:

Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.

Solution 2:

Let the polynomial be $ax^3 + bx^2 + cx + d$ and the zeroes be α, β , and γ . It is given that

$$\alpha + \beta + \gamma = \frac{2}{1} = \frac{-b}{a}$$

$$\alpha\beta + \beta\gamma + \alpha\gamma = \frac{-7}{1} = \frac{c}{a}$$

$$\alpha\beta\gamma = \frac{-14}{1} = \frac{-d}{a}$$

If $a = 1$, then $b = -2$, $c = -7$, $d = 14$
Hence, the polynomial is $x^3 - 2x^2 - 7x + 14$.

Question 3:

If the zeroes of polynomial $x^3 - 3x^2 + x + 1$ are a - b, a, a + b, find *a* and *b*.

Solution 3: $p(x) = x^3 - 3x^2 + x + 1$ re obta Zeroes are a - b, a + a + bComparing the given polynomial with $px^3 + qx^2 + rx + t$, we obtain p = 1, q = -3, r = 1, t = 1Sum of zeroes = a - b + a + a + b $\frac{-q}{p} = 3a$ $\frac{-(-3)}{1} = 3a$ 3 = 3aa = 1 The zeroes are 1 - b, 1 + b. Multiplication of zeroes = 1(1 - b)(1 + b) $\frac{-t}{p} = 1 - b^2$ $\frac{-1}{1} = 1 - b^2$ $1 - b^2 = -1$ $1 + 1 = b^2$ $b = \pm \sqrt{2}$ Hence, a = 1 and $b = \sqrt{2}$ or $-\sqrt{2}$.

Question 4:

It two zeroes of the polynomial $x^4 - 6x^3 - 26x^2 + 138x - 35$ are $2 \pm \sqrt{3}$, find other zeroes.

Solution 4:

Given that $2 + \sqrt{3}$ and $2 - \sqrt{3}$ are zeroes of the given polynomial. Therefore, $(x-2-\sqrt{3})(x-2+\sqrt{3}) = x^2 + 4 - 4x - 3$ $= x^2 - 4x + 1$ is a factor of the given polynomial For finding the remaining zeroes of the given polynomial, we will find the quotient by dividing $x^4 - 6x^3 - 26x^2 + 138x - 35$ by $x^2 - 4x + 1$. $\frac{x^2-2x-35}{x^2-4x+1)x^4-6x^3-26x^2+138x-35}$ +1 $x^4 - 4x^3 + x^2$ $\frac{- + -}{-2x^3 - 27x^2 + 138x - 35}$ $-2x^{3}+8x^{2}-2x$ + - + $-35x^{2} + 140x - 35$ $-35x^{2} + 140x - 35$

Clearly, $= x^4 - 6x^3 - 26x^2 + 138x - 35 = (x^2 - 4x + 1)(x^2 - 2x - 35)$ It can be observed that $(x^2 - 2x - 35)$ is also a factor of the given polynomial. And $= (x^2 - 2x - 35) = (x - 7)(x + 5)$ Therefore, the value of the polynomial is also zero when or x - 7 = 0Or x + 5 = 0

Or
$$x + 3 = 0$$

Or $x = 7$ or -5

Hence, 7 and -5 are also zeroes of this polynomial.

Question 5:

If the polynomial $x^4 - 6x^3 + 16x^2 - 25x - 10$ is divided by another Polynomial $x^2 - 2x + k$, the remainder comes out to be x + a, find k and a.

Solution 5:

By division algorithm, $Dividend = Divisor \times Quotient + Remainder$ Dividend – Remainder = Divisor × Ouotient $x^{4}-6x^{3}+16x^{2}-25x-10-x-a=x^{4}-6x^{3}+16x^{2}-26x+10-a$ will be perfectly divisible by $x^2 - 2x + k$. Let us divide by $x^4 - 6x^3 + 16x^2 - 26x - 10 - a$ by $x^2 - 2x + k$ $x^{2} - 4x + (8 - k)$ $x^{2} - 2x + k)\overline{x^{4} - 6x^{3} + 16x^{2} - 26x + 10 - a}$ $x^{4} - 2x^{3} + kx^{2}$ - + - $- 4x^{3} + (16 - k)x^{2} - 26x$ $- 4x^{3} + 8x^{2} - 4kx$ + - - + $(8 - k)x^{2} - (26 - 4k)x + 10 - a$ $(8-k)x^{2}-(16-2k)x+(8k-k^{2})$ $(-10+2k)x + (10-a-8k+k^2)$ $(x^{2}-4x+1)(x^{2}-2x-35) = (x-7)(x+5)$

It can be observed that $(-10+2k)x + (10-a-8k+k^2)$ will be 0. Therefore, (-10+2k) = 0 and $(10-a-8k+k^2) = 0$ For (-10+2k) = 0, 2 k = 10

And thus,
$$k = 5$$

For $(10 - a - 8k + k^2) = 0$
 $10 - a - 8 \times 5 + 25 = 0$
 $10 - a - 40 + 25 = 0$
 $-5 - a = 0$
Therefore, $a = -5$
Hence, $k = 5$ and $a = -5$

