Functions Ex2.2 Q1(i)

Since,
$$f: R \to R$$
 and $g: R \to R$

$$\therefore f \circ g : R \to R \text{ and } gof : R \to R$$

Now,
$$f(x) = 2x + 3$$
 and $g(x) = x^2 + 5$

$$g \circ f(x) = g(2x + 3) = (2x + 3)^{2} + 5$$

$$\Rightarrow$$
 gof(x) = 4x² + 12x + 14

$$f \circ g(x) = f(g(x)) = f(x^2 + 5) = 2(x^2 + 5) + 3$$

$$\Rightarrow f \circ g(x) = 2x^2 + 13$$

Functions Ex2.2 Q1(ii)

$$f(x) = 2x + x^2 \quad \text{and} \quad g(x) = x^2$$

$$g \circ f(x) = g(f(x)) = g(2x + x^2)$$

 $g \circ f(x) = (2x + x^2)^3$

$$f \circ g(x) = f(g(x)) = f(x^3)$$

$$f \circ g(x) = 2x^3 + x^6$$

Functions Ex2.2 Q1(iii)

$$f(x) = x^2 + 8$$
 and $g(x) = 3x^3 + 1$

Thus,
$$g \circ f(x) = g[f(x)]$$

$$\Rightarrow g \circ f(x) = g[x^2 + 8]$$

$$\Rightarrow g \circ f(x) = 3[x^2 + 8]^3 + 1$$

Similarly,
$$f \circ g(x) = f[g(x)]$$

$$\Rightarrow f \circ g(x) = f[3x^3 + 1]$$

$$\Rightarrow f \circ g(x) = [3x^3 + 1]^2 + 8$$

$$\Rightarrow f \circ g(x) = [9x^6 + 1 + 6x^3] + 8$$

$$\Rightarrow f \circ g(x) = 9x^6 + 6x^3 + 9$$

Functions Ex2.2 Q1(iv)

$$f(x) = x$$
 and $g(x) = |x|$

Now,
$$g \circ f(x) = g(f(x)) = g(x)$$

$$g \circ f(x) = |x|$$

and,
$$f \circ g(x) = f(g(x)) = f(|x|)$$

$$\therefore \qquad f \circ g(x) = |x|$$

Functions Ex2.2 Q1(v)

$$g \circ f(x) = g(f(x)) = g(x)$$

 $g \circ f(x) = |x|$
 $o g(x) = f(g(x)) = f(|x|)$
 $o g(x) = |x|$
 $o g(x) = |x|$
 $o g(x) = |x|$
 $o g(x) = |x|$
 $o g(x) = x^2 + 2x - 3$ and $g(x) = 3x - 4$
 $g \circ f(x) = g(f(x)) = g(x^2 + 2x - 3)$
 $g \circ f(x) = 3(x^2 + 2x - 3) - 4$
 $g \circ f(x) = 3x^2 + 6x - 13$
 $o g(x) = f(g(x)) = f(3x - 4)$
 $o g(x) = (3x - 4)^2 + 2(3x - 4) - 3$

Now,
$$g \circ f(x) = g(f(x)) = g(x^2 + 2x - 3)$$

$$g \circ f(x) = 3(x^2 + 2x - 3) - 4$$

$$\Rightarrow g \circ f(x) = 3x^2 + 6x - 13$$

and,
$$f \circ g(x) = f(g(x)) = f(3x - 4)$$

$$f \circ g(x) = (3x - 4)^2 + 2(3x - 4) - 3$$
$$= gx^2 + 16 - 24x + 6x - 8 - 3$$

$$f \circ g(x) = 9x^2 - 18x + 5$$

Functions Ex2.2 Q1(vi)

$$f(x) = 8x^3$$
 and $g(x) = x^{\frac{1}{3}}$

Now,
$$g \circ f(x) = g(f(x)) = g(8x^3)$$

$$=(8x^3)^{\frac{1}{3}}$$

$$g \circ f(x) = 2x$$

and,
$$f \circ g(x) = f(g(x)) = f(x^{\frac{1}{3}})$$

$$= 8\left(x^{\frac{1}{3}}\right)^3$$

$$f \circ g(x) = 8x$$

Let
$$f = \{(3,1), (9,3), (12,4)\}$$
 and $g = \{(1,3), (3,3), (4,9), (5,9)\}$

Now,

range of
$$f = \{1, 3, 4\}$$

domain of $f = \{3, 9, 12\}$
range of $g = \{3, 9\}$
domain of $g = \{1, 3, 4, 5\}$

since, range of $f \subset \text{domain of } g$ $\therefore g \circ f$ in well defined.

Again, range of $g \subseteq \text{domain of } f$ $\therefore f \circ g$ in well defined.

Now
$$g \circ f = \{(3,3), (9,3), (12,9)\}$$

 $f \circ g = \{(1,1), (3,1), (4,3), (5,3)\}$

Functions Ex2.2 Q3

We have,

$$f = \{(1,-1), (4,-2), (9,-3), (16,4)\}$$
 and $g = \{(-1,-2), (-2,-4), (-3,-6), (4,8)\}$

Now,

Domain of
$$f = \{1, 4, 9, 16\}$$

Range of $f = \{-1, -2, -3, 4\}$
Domain of $g = \{-1, -2, -3, 4\}$
Range of $g = \{-2, -4, -6, 8\}$

Clearly range of f = domain of g $\therefore g \circ f$ is defined.

but, range of $g \neq \text{dom ain of } f$ $\therefore f \circ g$ in not defined.

Now,

$$g \circ f(1) = g(-1) = -2$$

 $g \circ f(4) = g(-2) = -4$
 $g \circ f(9) = g(-3) = -6$
 $g \circ f(16) = g(4) = 8$

$$g \circ f = \{(1,-2), (4,-4), (9,-6), (16,8)\}$$

$$A = \{a, b, c\}, B = \{u, v, w\}$$
 and $f = A \to B$ and $g : B \to A$ defined by $f = \{(a, v), (b, u), (c, w)\}$ and $g = \{(u, b), (v, a), (w, c)\}$

For both f and g, different elements of domain have different images ∴ f and g are one-one

Again for each element in co-domain of f and g, there in a pre image in domain $\therefore f$ and g are onto

Thus, f and g are bijectives.

Now,

$$g \circ f = \{(a, a), (b, b), (c, c)\}$$
 and
 $f \circ g = \{(u, u), (v, v), (w, w)\}$

Functions Ex2.2 Q5

d = 633 $(x) = g(x^2 + 8)$ $= 3(x^2 + 8)^3 + 1$ $(x)^3 + 1 = 218^7$ We have, $f: R \to R$ given by $f(x) = x^2 + 8$ and $g: R \to R$ given by $g(x) = 3x^3 + 1$

:.
$$f \circ g(x) = f(g(x)) = f(3x^3 + 1)$$

= $(3x^3 + 1)^2 + 8$

$$f \circ g(2) = (3 \times 8 + 1)^2 + 8 = 625 + 8 = 633$$

Again

$$g \circ f(x) = g(f(x)) = g(x^2 + 8)$$

= $3(x^2 + 8)^3 + 1$

$$g \circ f(1) = 3(1+8)^3 + 1 = 2188$$

Functions Ex2.2 Q6

We have,
$$f: R^+ \to R^+$$
 given by
$$f(x) = x^2$$

$$g: R^+ \to R^+$$
 given by
$$g(x) = \sqrt{x}$$

$$f \circ g(x) = f(g(x)) = f(\sqrt{x}) = (\sqrt{x})^2 = x$$
Also,
$$g \circ f(x) = g(f(x)) = g(x^2) = \sqrt{x^2} = x$$

Thus,

$$f \circ g(x) = g \circ f(x)$$

We have, $f: R \to R$ and $g: R \to R$ are two functions defined by $f(x) = x^2$ and g(x) = x + 1

Now,

$$f \circ g(x) = f(g(x)) = f(x+1) = (x+1)^{2}$$

$$\therefore f \circ g(x) = x^{2} + 2x + 1 \dots (i)$$

$$g \circ f(x) = g(f(x)) = g(x^{2}) = x^{2} + 1 \dots (ii)$$

$$f \circ g \neq g \circ f$$

Functions Ex2.2 Q8

Let $f: R \to R$ and $g: R \to R$ are defined as f(x) = x + 1 and g(x) = x - 1

Now,

$$f \circ g(x) = f(g(x)) = f(x-1) = x-1+1$$

= $x = I_R \dots (i)$

Again,
$$f \circ g(x) = f(g(x)) = g(x+1) = x+1-1$$

$$= x = I_R \dots (ii)$$
from (i) & (ii)
$$f \circ g = g \circ f = I_R$$
Functions Ex2.2 Q9
We have, $f: N \to Z_0, \quad g: Z_0 \to Q$ and $h: Q \to R$

$$Also, f(x) = 2x, \quad g(x) = \frac{1}{x} \text{ and } h(x) = e^x$$
Now, $f: N \to Z_0 \quad \text{and } h \circ g: Z_0 \to R$

$$\therefore (h \circ g) \circ f: N \to R$$
also, $g \circ f: N \to Q \quad \text{and } h: Q \to R$

$$\therefore h \circ (g \circ f): N \to R$$

$$f \circ g = g \circ f = I_P$$

Also,
$$f(x) = 2x$$
, $g(x) = \frac{1}{x}$ and $h(x) = e^x$

$$\therefore (h \circ g) \circ f : N \to R$$

$$\therefore h \circ (g \circ f) : N \to R$$

Thus, $(h \circ g) \circ f$ and $h \circ (g \circ f)$ exist and are function from N to set R.

Finally.
$$(h \circ g) \circ f(x) = (h \circ g) (f(x)) = (h \circ g) (2x)$$
$$= h (\frac{1}{2x})$$
$$= e^{\frac{1}{2x}}$$

now,
$$h \circ (g \circ f)(x) = h \circ (g(2x)) = h(\frac{1}{2x})$$
$$= e^{\frac{1}{2x}}$$

Hence, associativity verified.

We have,

$$\begin{split} h \circ \big(g \circ f\big)\big(x\big) &= h \, \big(g \circ f\big(x\big)\big) = h \, \big(g \, \big(f(x)\big)\big) \\ &= h \, \big(g \, \big(2x\big)\big) = h \, \big(3(2x) + 4\big) \\ &= h \, \big(6x + 4\big) = \sin \big(6x + 4\big) \quad \forall x \in \mathbb{N} \\ \big(\big(h \circ g\big) \circ f\big)\big(x\big) &= \big(h \circ g\big) \, \big(f(x)\big) = \big(h \circ g\big) \, \big(2x\big) \\ &= h \, \big(g \, \big(2x\big)\big) = h \, \big(3(2x) + 4\big) \\ &= h \, \big(6x + 4\big) = \sin \big(6x + 4\big) \quad \forall x \in \mathbb{N} \end{split}$$

This shows, $h \circ (g \circ f) = (h \circ g) \circ f$

Functions Ex2.2 Q11

Define $f: \mathbf{N} \to \mathbf{N}$ by, f(x) = x + 1

And,
$$g: \mathbf{N} \to \mathbf{N}$$
 by,

$$g(x) = \begin{cases} x - 1 & \text{if } x > 1 \\ 1 & \text{if } x = 1 \end{cases}$$

We first show that f is not onto.

For this, consider element 1 in co-domain N. It is clear that this element is not an image of any of the elements in domain N.

Therefore, f is not onto.

Now, gof: $\mathbf{N} \to \mathbf{N}$ is defined by,

Functions Ex2.2 Q12

Define $f: \mathbf{N} \to \mathbf{Z}$ as f(x) = x and $g: \mathbf{Z} \to \mathbf{Z}$ as g(x) = x.

We first show that g is not injective.

It can be observed that:

$$g(-1) = |-1| = 1$$

$$g(1) = |1| = 1$$

Therefore, g(-1) = g(1), but $-1 \neq 1$.

Therefore, g is not injective.

Now, gof: $\mathbf{N} \to \mathbf{Z}$ is defined as gof(x) = g(f(x)) = g(x) = |x|.

Let $x, y \in \mathbf{N}$ such that gof(x) = gof(x).

$$\Rightarrow |x| = |y|$$

Since x and $y \in \mathbf{N}$, both are positive.

$$\therefore |x| = |y| \Rightarrow x = y$$

Hence, gof is injective

Functions Ex2.2 Q13

We have, $f:A \rightarrow B$ and $g:B \rightarrow C$ are one-one functions

Now we have to prove $: g \circ f : A \to C$ in one-one

let $x, y \in A$ such that

$$g \circ f(x) = g \circ f(y)$$

$$\Rightarrow g(f(x)) = g(f(y))$$

$$\Rightarrow f(x) = f(y) \qquad [\because g \text{ in one-one}]$$

$$\Rightarrow \qquad x = y \qquad \qquad \left[\because f \text{ in one-one} \right]$$

We have, $f: A \rightarrow B$ and $g: B \rightarrow C$ are onto functions.

Now, we need to prove: $g \circ f : A \to C$ in onto.

let $y \in C$, then $g \circ f(x) = y$ $\Rightarrow g(f(x)) = y \dots (i)$

Since g is onto, for each element in C, then exists a preimage in B.

$$\therefore \qquad g(x) = y \dots (ii)$$

From (i)& (ii) $f(x) = \alpha.$

Since f is onto, for each element in B there exists a preimage in A

$$\therefore f(x) = \alpha \dots (iii)$$

From (ii) and (iii) we can conclude that for each $y \in \mathbb{C}$, there exists a pre image in A such that $g \circ f(x) = y$

 $\therefore g \circ f$ is onto