RD Sharma
Solutions
Class 12 Maths
Chapter 11
Ex 11.2

Chapter: Differentiation

Exercise: 11.2

Page Number: 11.37

Q.1

Solution:

Consider $y = \sin(3x + 5)$

Differentiate y with the respect to x,

$$\frac{dy}{dx} = \frac{d}{dx} \left(\sin\left(3x + 5\right) \right)$$

$$=\cos(3x+5)\frac{d}{dx}(3x+5)$$

[using chain rule]

$$=\cos(3x+5)\times[3(1)+0]$$

$$=3\cos(3x+5)$$

Hence the solution is
$$\frac{d}{dx}(\sin(3x+5)) = 3\cos(3x+5)$$

Q.2 **Solution:**

Consider $y = \tan^2 x$

Differentiate it with the repect to x,

$$\frac{dy}{dx} = 2 \tan x \frac{d}{dx} (\tan x)$$

[using chain rule]

$$= 2 \tan x \times \sec^2 x$$

Hence the solution is $\left| \frac{d}{dx} = (\tan^2 x) \times \sec^2 x \right|$

Q.3

Solution:

Consider

$$y = \tan(x^{\circ} + 45^{\circ})$$

$$y = \tan\left\{ (x^{\circ} + 45^{\circ}) \frac{\pi}{180^{\circ}} \right\}$$

$$\frac{dy}{dx} = \frac{d}{dx} \tan\left\{ \left(x^{\circ} + 45^{\circ} \right) \frac{\pi}{180^{\circ}} \right\}$$

$$=\sec^2\left\{\left(x^\circ + 45^\circ\right)\frac{\pi}{180^\circ}\right\} \times \frac{d}{dx}\left(x^\circ + 45^\circ\right)\frac{\pi}{180^\circ}$$

[using chain rule]

$$= \frac{\pi}{180^{\circ}} \sec^2 \left(x^{\circ} + 45^{\circ} \right)$$

Hence the solution is
$$\frac{d}{dx} = \left(\tan\left(x^{\circ} + 45^{\circ}\right)\right) = \frac{\pi}{180^{\circ}} \sec^{2}\left(x^{\circ} + 45^{\circ}\right)$$

Q.4

Solution:

Consider $y = \sin(\log x)$

Differentiate it with respect to x,

$$\frac{dy}{dx} = \frac{d}{dx}\sin(\log x)$$

$$=\cos(\log x)\frac{d}{dx}(\log x)$$

[using chain rule]

$$=\frac{1}{r}\cos(\log x)$$

Hence the solution is $\frac{d}{dx} = (\sin(\log x)) = \frac{1}{x}\cos(\log x)$

Q.5

Solution:

Consider $y = e^{\sin \sqrt{x}}$

Differentiate it with respect to x,

$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\sin \sqrt{x}} \right)$$

$$=e^{\sin\sqrt{x}}\frac{d}{dx}(\sin\sqrt{x})$$

[using chain rule]

$$=e^{\sin\sqrt{x}} \times \cos\sqrt{x} \frac{d}{dx} \sqrt{x}$$

$$=e^{\sin\sqrt{x}}\times\cos\sqrt{x}\times\frac{1}{2\sqrt{x}}$$

$$= \frac{1}{2\sqrt{x}}\cos\sqrt{x} \times e^{\sin\sqrt{x}}$$

Hence the solution is
$$\frac{d}{dx} = \left(e^{\sin\sqrt{x}}\right) = \frac{1}{2\sqrt{x}}\cos\sqrt{x} \times e^{\sin\sqrt{x}}$$

Q.6

Solution:

Consider $y = e^{\tan x}$

Differentiate it with respect to x,

$$\frac{dy}{dx} = \frac{d}{dx} \left(\tan x \right)$$

[usnig chain rule]

$$=e^{\tan x} \times \sec^2 x$$

Hence the solution is
$$\left| \frac{d}{dx} = \left(e^{\tan x} \right) \right| = \sec^2 \times e^{\tan x}$$

Q.7

Solution:

Consider $y = \sin^2(2x+1)$

Differentiate it with respect to x,

$$\frac{dy}{dx} = \frac{d}{dx} \left[\sin^2 \left(2x + 1 \right) \right]$$

$$= 2\sin(2x+1)\frac{d}{dx}\sin(2x+1)$$

[using chain rule]

$$= 2\sin(2x+1)\cos(2x+1)\frac{d}{dx}(2x+1)$$

$$= 4\sin(2x+1)\cos(2x+1)$$

$$= 2\sin 2(2x+1)$$

$$\left[\text{Since, } \sin^2 A = 2 \sin A \cos A \right]$$

$$2\sin(4x+2)$$

Hence the solution is
$$\left| \frac{d}{dx} \left(\sin^2 \left(2x + 1 \right) \right) \right| = 2 \sin(4x + 2)$$

Solution:

$$\log_7(2x-3)$$

$$\Rightarrow y = \frac{\log(2x - 3)}{\log 7}$$

$$\left[\text{Since}, \log_a^b = \frac{\log b}{\log a} \right]$$

Differentiate it with respect to x,

$$\frac{dy}{dx} = \frac{1}{\log 7} \frac{d}{dx} \left(\log(2x - 3) \right)$$

$$= \frac{1}{\log 7} \times \frac{1}{(2x-3)} \frac{d}{dx} (2x-3)$$

[usnig chain rule]

$$=\frac{2}{(2x3)\log 7}$$

$$= \frac{2}{(2x3)\log 7}$$
Hence the solution is
$$\frac{d}{dx}(\log_7(2x-3)) = \frac{2}{(2x-3)\log 7}$$
Q.9
Solution:

Consider
$$y = \tan 5x$$

Consider
$$y = \tan 5x$$

$$\Rightarrow y = \tan\left(5x^{\circ} \times \frac{\pi}{180^{\circ}}\right)$$

ion:

$$der \ y = \tan 5x^{\circ}$$

$$y = \tan \left(5x^{\circ} \times \frac{\pi}{180^{\circ}}\right)$$

$$= \sec^{2} \times \left(5x^{\circ} \times \frac{\pi}{180^{\circ}}\right) \frac{d}{dx} \left(5x^{\circ} \frac{\pi}{180^{\circ}}\right)$$
[usnig chain rule]

$$= \left(\frac{5\pi}{180^{\circ}}\right) \sec^{2} \left(5x^{\circ} \frac{\pi}{180^{\circ}}\right)$$

$$= \left(\frac{5\pi}{180^{\circ}}\right) \sec^2 \left(5x^{\circ} \frac{\pi}{180^{\circ}}\right)$$

$$= \left(\frac{5\pi}{180^{\circ}}\right) \sec^2\left(5x^{\circ} \frac{\pi}{180^{\circ}}\right)$$

$$=\frac{5\pi}{180^{\circ}}\sec^2\left(5x^{\circ}\right)$$

Hence the solution is, $\left| \frac{d}{dx} \left(\tan \left(5x \circ \right) \right) \right| = \frac{5\pi}{180^{\circ}} \sec^2 \left(5x^{\circ} \right)$

Q.11 Solution:

 $\frac{dy}{dx} = \frac{d}{dx} \left(3^{e^x} \right)$

 $=3^{e^x}\log 3\frac{d}{dx}(e^x)$

[using chain rule]

Consider $y = \log_x 3$

 $\left[\text{Since}, \log_a^b = \frac{\log b}{\log a} \right]$

 $\Rightarrow y = \frac{\log 3}{\log x}$

Hence the sollution is

 $=e^x \times 3^{e^x} \log 3$

Q12 **Solution:**

Solution:

Consider $y = 2^{x^3}$

Differentiate with respect to x,

$$\frac{dy}{dx} = \frac{d}{dx} \left(2^{x^3} \right)$$

 $=2^{x^3} \times \log_2 \frac{d}{dx} (x^3)$

 $=3x^2\times 2^{x^3}\times \log_3$

Differentiate it with respect to x,

Hence the solution is $\left| \frac{d}{dx} (2^{x^3}) \right| = 3x^2 \times 2^{x^3} \log_2$

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{\log 3}{\log x} \right)$$

$$= \log 3 \frac{d}{dx} (\log x)^{-1}$$

$$= \log 3 \times \left[-1(\log x)^{-2} \right] \frac{d}{dx} (\log x)$$

[using chain rule]

$$= -\frac{\log 3}{\left(\log x\right)^2} \times \frac{1}{x}$$

$$= -\left(\frac{\log 3}{\log x}\right)^2 \times \frac{1}{x} \times \frac{1}{\log 3}$$

$$\left[\text{Since}, \frac{\log b}{\log a} = 10a_a^b\right]$$

$$=-\frac{1}{x\log 3(\log_2 x)^2}$$

Since,
$$\frac{\log b}{\log a} = 10a_a^b$$

$$= -\frac{1}{x \log 3(\log_3 x)^2}$$
Hence the solution is, $\frac{d}{dx}(\log_x 3) = -\frac{1}{x \log 3(\log_3 x)^2}$
Q.13
Solution:

Consider $y = 3^{x^2 + 2x}$
Differentiate with respect to x ,
$$\frac{dy}{dx} = \frac{d}{dx}(3^{x^2 + 2x})$$

$$= 3^{x^2 + 2x} \times \log 3 \frac{d}{dx}(x^2 + 2x)$$
[using chain rule]

Consider
$$y = 3^{x^2 + 2x}$$

$$\frac{dy}{dx} = \frac{d}{dx} \left(3^{x^2 + 2x} \right)$$

$$=3^{x^2+2x} \times \log 3 \frac{d}{dx} \left(x^2+2x\right)$$

[using chain rule]

$$= (2x+2)\log 3 \times 3^{x^2+2x}$$

Hence the sollution is,
$$\frac{d}{dx}(3^{x^2+2x}) = (2x+2)\log 3 \times 3^{x^2+2x}$$

Q.15

Solution:

Consider $y = 3^{x \log x}$

Differentiate with respect to x,

$$\frac{dy}{dx} = \frac{d}{dx} \left(3^{x \log x} \right)$$

$$=3^{x\log x} \times \log 3 \frac{d}{dx} (x \log x)$$

[using chain rule]

$$=3^{x\log x} \times \log 3 \left[x \frac{d}{dx} (\log x) + \log x \frac{d}{dx} (x) \right]$$

[using chain rule]

$$=3^{x\log x}\times\log 3\left[\frac{x}{x}+\log x\right]$$

$$=3^{x\log x}(1+\log x)\times\log 3$$

Hence the sollution is, $\frac{d}{dx}(3^x \log x) = \log 3 \times 3^{x \log x} (1 + \log x)$

Q.17

Solution:

Consider
$$y = \sqrt{\frac{1-x^2}{1+x^2}}$$

Q.18

Solution:

Consider
$$y = (\log \sin x)^2$$

Differentiate with respect to x,

$$\frac{dy}{dx} = \frac{d}{dx} (\log \sin x)^2$$

$$=2(\log\sin x)\times\frac{d}{dx}(\log\sin x)$$

[using chain rule]

$$= 2(\log \sin x) \times \frac{1}{\sin x} \frac{d}{dx} (\log x)$$

$$=2(\log\sin x)\times\frac{1}{\sin x}\times\frac{1}{x}$$

$$=\frac{2\log\sin x}{\cos^2 x}$$

Hence the sollution is, $\frac{d}{dx} (\log \sin x)^2 = \frac{2 \log \sin x}{x \sin x}$

$$y = \left(\frac{1 - x^2}{1 + x^2}\right)^{\frac{1}{2}}$$

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{1 - x^2}{1 + x^2} \right)^{\frac{1}{2}}$$

 $= \frac{1}{2} \left(\frac{1 - x^2}{1 + x^2} \right)^{\frac{1}{2} - 1} \frac{d}{dx} \left(\frac{1 - x^2}{1 + x^2} \right)$

[using quotient rule]

 $=\frac{1}{2}\frac{-4x}{\sqrt{1-x^2}\left(1+x^2\right)^{\frac{3}{2}}}$

Consider $v = e^{3x} \cos 2x$

Differentiate with respect to x,

Q.21 Solution:

[using chain rule]

 $= \frac{1}{2} \left(\frac{1 - x^2}{1 + x^2} \right)^{\frac{-1}{2}} \left| \frac{\left(1 + x^2 \right) \frac{d}{dx} \left(1 - x^2 \right) \frac{d}{dx} \left(1 + x^2 \right)}{\left(1 + x^2 \right)} \right|$

 $= \frac{1}{2} \left(\frac{1+x^2}{1-x^2} \right)^{\frac{1}{2}} \left| \frac{(1+x^2)(-2x)-(1-x^2)(2x)}{(1+x^2)^2} \right|$

Hence the sollution is, $\frac{d}{dx} \left(\sqrt{\frac{1-x^2}{1+x^2}} \right) = \frac{-2x}{\sqrt{1-x^2(1+x^2)^{\frac{3}{2}}}}$

 $= \frac{1}{2} \left(\frac{1+x^2}{1-x^2} \right)^{\frac{1}{2}} \left[\frac{-2x-2x^3-2x+2x^3}{(1+x^2)^2} \right]$

$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{3x} \cos 2x \right)$$
$$= e^{3x} \times \frac{d}{dx} \left(\cos 2x \right) + \cos 2x \frac{d}{dx} \left(e^{3x} \right)$$

[using product rule]

[using chain rule]

 $=-2e^{3x}\sin 2x+3e^{3x}\cos 2x$

 $=e^{3x}(3\cos 2x-2\sin 2x)$

 $= e^{3x} \times \left(-\sin 2x\right) \frac{d}{dx} (2x) + \cos 2x e^{3x} \frac{d}{dx} (3x)$

$$-=$$

[using chain rule] $= \cos(\log \sin x) \times \frac{1}{\sin x} \frac{d}{dx} 0 \sin x$ $= \cos(\log \sin x) \frac{\cos x}{\sin x}$ $\cos(\log \sin x) \times cc'$ = c'

Hence the sollution is, $\frac{d}{dx} \left(e^{3x} cps 2x \right) = e^{3x} \left(3\cos 2x - 2\sin 2x \right)$

Hence the sollution is, $\frac{d}{dx} (\sin(\log \sin x)) = \cos(\log \sin x) x \cot x$ Solution:

Q.23

Differentiate with respect to x,

Consider $y = e^{\tan 3x}$

$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\tan 3x} \right)$$

$$=e^{\tan 3x}\frac{d}{dx}(\tan 3x)$$

[using chain rule]

$$= e^{\tan 3x} \times \sec^2 3x \times \frac{d}{dx} (3x)$$

Hence the sollution is,
$$\frac{d}{dx} (e^{\tan 3x}) = 3e^{\tan 3x} \times \sec^2 3x$$

Q.24

Solution:

Consider
$$y = e^{\sqrt{\cot x}}$$

Differentiate with respect to x,

$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{(\cot x)^{\frac{1}{2}}} \right)$$

$$= e^{(\cot x)^{\frac{1}{2}}} \times \frac{d}{dx} (\cot x)^{\frac{1}{2}}$$

[using chain rule]

$$=e^{\sqrt{\cot x}}\times\frac{1}{2}(\cot x)^{\frac{1}{2}-1}\frac{d}{dx}(\cot x)$$

$$= -\frac{e^{\sqrt{\cot x}} \times \cos ec^2 x}{2\sqrt{\cot x}}$$

Hence the sollution is $\frac{d}{dx} \left(e^{\sqrt{\cot x}} \right) = -\frac{e^{\sqrt{\cot x}} \times e^{\sqrt{\cot x}}}{2\sqrt{c}}$

Q.27

Solution:

Consider
$$y = \tan(e^{\sin x})$$

Differentiate with respect to x,

$$\frac{dy}{dx} = \frac{d}{dx} \left[\tan e^{\sin x} \right]$$

$$=\sec^2\left(e^{\sin x}\right)\frac{d}{dx}\left(e^{\sin x}\right)$$

$$=\sec^2\left(e^{\sin x}\right) \times e^{\sin x} \times \frac{d}{dx}(\sin x)$$

$$=\cos x \sec^2\left(e^{\sin x}\right) \times e^{\sin x}$$

Hence the sollution is,
$$\frac{d}{dx} \left(\tan e^{\sin x} \right) = \sec^2 \left(e^{\sin x} \right) \times \cos x$$

Q.30

Solution:

Consider $y = \log(\cos ecx - \cot x)$

Differentiate with respect to x,

$$\frac{dy}{dx} = \frac{d}{dx} \log(\cos ecx - \cot x)$$

$$= \frac{1}{(\cos ecx - \cot x)} \times (-\cos ecx \cot x + \cos ec^2 x)$$

using chain rule

$$= \frac{1}{(\cos ecx - \cot x)} \times (-\cos ecx \cot x + \cos ec^2 x)$$
$$\cos ecx (\cos ecx - \cot x)$$

$$= \frac{\cos ecx(\cos ecx - \cot x)}{(\cos ecx - \cot x)}$$

$$= \frac{\cos ecx (\cos ecx - \cot x)}{(\cos ecx - \cot x)}$$

$$= \cos ecx$$
Hence the sollution is,
$$\frac{d}{dx} (\log(\cos ecx - \cot x)) = \cos ecx$$
Q.33
Solution:

Consider
$$y = \tan^{-1}(e^x)$$

Differentiate with respect to x,

$$\frac{dy}{dx} = \frac{d}{dx} \left(\tan^{-1} e^x \right)$$
$$= \frac{1}{1 + \left(e^{2x} \right)^2} \frac{d}{dx} \left(e^x \right)$$

$$= \frac{1}{1 + e^{2x}} \times e^x$$
$$= \frac{e^x}{1 + e^{2x}}$$

Hence the sollution is,
$$\frac{d}{dx} \left(\tan^{-1} e^x \right) = \frac{e^x}{1 + e^{2x}}$$

Solution:

Consider $y = e^{\sin^{-1} 2x}$

Differentiate with respect to x,

$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\sin^{-1} 2x} \right)$$

$$=e^{\sin^{-1}2x}\times\frac{d}{dx}\left(\sin^{-1}2x\right)$$

[using chain rule]

$$= e^{\sin^{-1} 2x} \times \frac{1}{\sqrt{1 - (2x)^2}} \frac{d}{dx} (2x)$$

$$= \frac{2e^{\sin - 1} 2x}{\sqrt{1 - 4x^2}}$$

Hence the sollution is, $\frac{d}{dx} \left(e^{\sin^{-1} 2x} \right) = \frac{2e \sin^{-1} 2x}{\sqrt{1 - 4x^2}}$

Q.35

Solution:

Consider $y = (2\sin^{-1} x)$

Differentiate with respect to x,

$$\frac{dy}{dx} = \frac{d}{dx} \left(\sin \left(2 \sin^{-1} x \right) \right)$$

$$= \cos\left(2\sin^{-1}x\right)\frac{d}{dx}\left(2\sin^{-1}x\right)$$

[using chain rule]

$$=\cos\left(2\sin^{-1}x\right)\times2\frac{1}{\sqrt{1-x^2}}$$

$$=\frac{2\cos\left(2\sin^{-1}x\right)}{\sqrt{1-x^2}}$$

Hence the sollution is

$$\frac{d}{dx\left(\sin\left(2\sin^{-1}x\right)\right) = \frac{2\cos\left(2\sin^{-1}x\right)}{\sqrt{1-x^2}}}$$

Q.36

Solution:

Consider $y = e^{\tan^{-1}\sqrt{x}}$

$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\tan^{-1}} \sqrt{x} \right)$$

$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\tan^{-1}} \sqrt{x} \right)$$
$$= e^{\tan^{-1} \sqrt{x}} \frac{d}{dx} \left(\tan^{-1} \sqrt{x} \right)$$

$$=e^{\tan^{-1}\sqrt{x}}\times \frac{1}{1}$$

$$=e^{\tan^{-1}\sqrt{x}}\times\frac{1}{1+\left(\sqrt{x}\right)^{2}}\frac{d}{dx}\left(\sqrt{x}\right)$$

$$1+\left(\sqrt{x}\right)$$

$$1 + \left(\sqrt{x}\right)$$

$$e^{\tan^{-1}\sqrt{x}}$$
 1

$$e^{\tan^{-1}\sqrt{x}}$$
 1

$$=\frac{e^{\tan^{-1}\sqrt{x}}}{1+x}\times\frac{1}{2\sqrt{x}}$$

$$=\frac{e^{\tan^{-1}\sqrt{x}}}{2\sqrt{x}(1+x)}$$

Solution:

Consider $y = \log(\tan^{-1} x)$ Differentiate with respect to x,

Hence the sollution is, $\frac{d}{dx} (\log \tan^{-1} x) = \frac{1}{(1+x^2) \tan^{-1} x}$

$$^{-1}x$$

$$= \frac{1}{\tan^{-1} x} \times \frac{d}{dx} \left(\tan^{-1} x \right)$$

Consider $y = \sin^2 \left\lceil \log(2x+3) \right\rceil$ Differentiate with respect to x,

 $=\frac{1}{(1+x^2)\tan^{-1}x}$

Q.43 Solution:

$$\frac{1}{dx}$$
 $\int \frac{dx}{dx}$

$$\frac{dy}{dx} = \frac{d}{dx} \log \left(\tan^{-1} x \right)$$

ot to
$$x$$
,

$$-\left(e^{\tan -1}\sqrt{\right)$$

Hence the sollution is,
$$\frac{d}{dx} \left(e^{\tan^{-1} \sqrt{x}} \right) = \frac{e^{\tan^{-1} \sqrt{x}}}{2\sqrt{x} \left(1 + x \right)}$$

$$\frac{1}{1+x}$$
.

$$\frac{dy}{dx} = \frac{d}{dx} \left[\sin^2 \left(\log \left(2x + 3 \right) \right) \right]$$

$$= 2\sin\left(\log\left(2x+3\right)\right)\frac{d}{dx}\sin\left(\log\left(2x+3\right)\right)$$

[using chain rule]

$$= 2\sin(\log(2x+3))\cos(\log(2x+3))\frac{d}{dx}\log(2x+3)$$

$$= \sin\left(2\log\left(2x+3\right)\right) \times \frac{1}{(2x+3)} \frac{d}{dx} (2x+3)$$

Since,
$$2 \sin A \cos A = \sin^2 A$$

$$= \sin\left(2\log\left(2x+3\right)\right) \times \frac{2}{\left(2x+3\right)}$$

Hence the sollution is
$$\frac{d}{dx} \left(\sin^2 \log (2x+3) \right) = \sin \left(2 \log (2x+3) \right) \times \frac{2}{(2x+3)}$$

Q.44

Solution:

Consider $y = e^x \log \sin 2x$

Differentiate with respect to x,

$$\frac{dy}{dx} = \frac{d}{dx} \Big[e^x \log \sin 2x \Big]$$

$$=e^{2}\frac{d}{dx}\log\sin 2x + \log\sin 2x \frac{d}{dx}(e^{x})$$

[using product rule and chain rule]

$$= e^{x} \frac{1}{\sin 2x} \frac{d}{dx} (\sin 2x) + \log \sin 2x (e^{x})$$

$$= \frac{e^x}{\sin 2x} \cos 2x \frac{d}{dx} (2x) + e^z \log \sin 2x$$

$$= \frac{2\cos 2xe^x}{\sin 2x} + e^x \log \sin 2x$$

$$= e^x \left(2 \cot 2x + \log \sin 2x \right)$$

Hence the sollution is,
$$\frac{d}{dx} (e^x \log \sin 2x) = e^x (2 \cot 2x + \log \sin 2x)$$

Q.47

Solution:

Consider
$$y = \left(\sin^{-1} x^4\right)^4$$

Differentiate with respect to x,
$$\frac{dy}{dx} = \frac{d}{dx} \left(\sin^{-1} x^4\right)^4$$

$$dx dx '$$

$$= 4\left(\sin^{-1} x^4\right) \frac{d}{dx} \left(\sin^{-1} x^4\right)$$

[using chain rule]

$$=4\left(\sin^{-1}x^{4}\right)^{3}\frac{1}{\sqrt{1-\left(x^{4}\right)^{2}}}\frac{d}{dx}\left(x^{4}\right)$$

$$= 4\left(\sin^{-1} x^4\right)^3 \frac{4x^3}{\sqrt{1-x^8}}$$
$$= \frac{16x^3 \left(\sin^{-1} x^4\right)^3}{\sqrt{1-x^8}}$$

Hence the sollution is,
$$\frac{d}{dx} \left(\sin^{-1} x^4 \right) = \frac{16x^3 \left(\sin^{-1} x^4 \right)^3}{\sqrt{1 - x^8}}$$

Solution:

Q.50

Consider $v = 3e^{-3x} \log(1+x)$

Differentiating it with respect to x and applying the chain and the product rule, we get

Differentiating it with respectively
$$\frac{dy}{dx} = 3 \frac{d}{dx} \left[e^{-3x} \log(1+x) \right]$$

$$\frac{dy}{dx} = 3\left(e^{-3x} \frac{1}{1+x} + \log(1+x)(-3e^{-3x})\right)$$
$$= 3\left(\frac{e^{-3x}}{1+x} - 3\log(1+x)\right)$$

The sollution is,

$$= 3e^{-3c} \left(\frac{1}{1+x} - 3\log(1+x) \right)$$

Q.56

Solution:

Consider $y = \cos(\log x)^2$

Differentiating it with respect to x and applying the chain and the product rule, we get

$$= -\sin(\log x)^{2} \frac{d}{dx} (\log x)^{2}$$

$$= -\sin(\log x)^{2} \frac{2 \log x}{x}$$

$$\frac{dy}{dx} = \frac{-2 \log x \sin(\log x)^{2}}{x}$$

 $\frac{dy}{dx} = \frac{d}{dx} \cos(\log x)^2$

Q.59

So The sollution is
$$\frac{dy}{dx} = \frac{-2\log x \sin(\log x)^2}{x}$$
Q.59
Solution:

Consider $y = \cos(\log x)^2$

Differentiating it with respect to x and applying the chain and the product rule, we get
$$\frac{dy}{dx} = \frac{d}{dx}\sqrt{x+1} + \frac{d}{dx}\sqrt{x-1}$$

$$\frac{dy}{dx} = \frac{d}{dx}\sqrt{x+1} + \frac{d}{dx}\sqrt{x-1}$$

$$= \frac{1}{2}(x+1)^{\frac{-1}{2}} + \frac{1}{2}(x-1)^{\frac{-1}{2}}$$

$$= \frac{1}{2} \left(\frac{1}{\sqrt{x+1}} + \frac{1}{\sqrt{x-1}} \right)$$

$$= \frac{1}{2} \left(\frac{\sqrt{x-1} + \sqrt{x+1}}{(\sqrt{x+1})(\sqrt{x-1})} \right)$$

$$\frac{dy}{dx} = \frac{1}{2} \left(\frac{y}{\sqrt{x^2 - 1}} \right)$$

$$So, \sqrt{x^2} - \frac{dy}{dx} = \frac{1}{2}y$$
Q.63

 $y = \sqrt{x + \frac{1}{\sqrt{x}}}$

Differentiate with respect to x,

$$\frac{dy}{dx} = \frac{d}{dx} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right)$$

$$= \frac{d}{dx} \left(\sqrt{x} \right) + \frac{d}{dx} \left(x^{-1\frac{1}{2}} \right)$$

$$= \frac{1}{2\sqrt{x}} + \left(-\frac{1}{2} \times x^{-\frac{1}{2}-1}\right)$$
$$= \frac{1}{2\sqrt{x}} - \frac{1}{2\sqrt[x]{x}}$$

$$\frac{dy}{dx} = \frac{x-1}{2x\sqrt{x}}$$

$$\Rightarrow 2x \frac{dy}{dx} = \frac{x}{\sqrt{x}} - \frac{1}{\sqrt{x}}$$

Hence the sollution is, $2x \frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}$

Q.71

Solution:

Differentiate with respect to x,

$$\frac{dy}{dx} = \frac{d}{dx} \left(e^x + e^{-x} \right)$$

$$= \frac{d}{dx}e^{x} + \frac{d}{dx}e^{-x}$$
$$= e^{x} + e^{-x}\frac{d}{dx}(-x)$$

$$= e^x + e^{-x} \left(-1\right)$$

$$=\left(e^{x}-e^{-x}\right)$$

$$=\sqrt{(e^x + e^{-x})^2 - 4e^x \times e^{-x}}$$

$$\left[\operatorname{Since}_{n}(a-b) = \sqrt{(a+b)^{2} - 4ab}\right]$$
$$= \sqrt{v^{2} - 4}$$

Since
$$e^x + e^{-x} = y$$

Hence the sollution is, $\frac{dy}{dx} = \sqrt{y^2 - 4s}$

Q.72 **Solution:**

Differentiating with respect to x,

$$\frac{dy}{dx} = \frac{d}{dx} \left(\sqrt{a^2 - x^2} \right)$$

$$= \frac{1}{2\sqrt{a^2 - x^2}} \frac{d}{dx} (a^2 - x^2)$$

[using chain rule]

$$=\frac{1}{2\sqrt{a^2-x^2}}\left(-2x\right)$$

$$=\frac{-x}{\sqrt{a^2-x^2}}$$

$$\sqrt{a^2 - x^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-x}{y}$$

$$\left[\text{Since}, \sqrt{a^2 - x^2} = y\right]$$

$$\Rightarrow y \frac{dy}{dx} = -x$$

Hence the sollution is, $y \frac{dy}{dx} + x = 0$

$$(a^2 - x^2)$$

$$= y$$