We have,

 $R = \{(a,b): a-b \text{ is divisible by 3; a,b, } \in Z\}$ To prove: R is an equivalence relation

Proff: Reflexivity: Let a∈ Z

a - a = 0

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

Symmetric: Let
$$a,b \in Z$$
 and $(a,b) \in R$

$$a-b$$
 is divisible by 3
 $a-b=3p$ For some $p \in \mathbb{Z}$

$$b-a=3\times(-p)$$

Transitive: Let a,b,c
$$\in$$
 Z and such that $(a,b) \in R$ and $(b,c) \in R$

$$\Rightarrow$$
 a-b=3p and b-c=3q For some p, q \in Z

$$\Rightarrow a-c=3(p+q)$$

$$\Rightarrow$$
 $(a,c) \in R$

Since, R is reflexive, symmetric and transitive, so R is equivalence relation.

 $R = \{(a,b): a-b \text{ is divisible by } 2; a,b, \in Z\}$

To prove: R is an equivalence relation

⇒

 \Rightarrow

$$a-a$$
 is divisible by 2

$$(a,a) \in R$$

Symmetric: Let a, $b \in Z$ and $(a,b) \in R$

$$a-b=2p$$
 For some $p \in \mathbb{Z}$

$$b-a=2\times(-p)$$

$$b-a\in R$$

Transitive: Let a,b,c
$$\in$$
 Z and such that $(a,b) \in R$ and $(b,c) \in R$

$$\Rightarrow a-b=2p$$
 and $b-c=q$ For some $p,q\in Z$

$$a - c = 2(p + q)$$

⇒
$$a-c$$
 is divisible by 2
⇒ $(a,c) \in R$

We have.

Now,

 \Rightarrow

 \Rightarrow

 \Rightarrow

 $R = \{(a,b): (a-b) \text{ is divisible by 5} \} \text{ on } Z.$

We want to prove that R is an equivalence relation on Z.

Reflexivity: Let a∈ Z

 $(a,a) \in R$, so R is reflexive

Symmetric: Let $(a,b) \in R$

$$\Rightarrow b - a = 5 \times (-P)$$

$$\Rightarrow b - a \text{ is divisible by 5}$$

a-c=5(p+q)

R is transitive.

$$\Rightarrow$$
 (b, a) $\in R$, so R is symmetric

a-c is divisible by 5.

Hence, R is equivalence relation on Z

Transitive: Let
$$(a,b) \in R$$
 and $(b,c) \in R$

Transitive: Let
$$(a,b) \in R$$
 and $(b,c) \in R$

a-b=5p and b-c=5q For some p,q \in Z

Thus, R being reflexive, symmetric and transitive on Z.

$$a-b=5P$$
 For some $P \in Z$
 $b-a=5 \times (-P)$

 $R = \{(a,b): a-b \text{ is divisible by n}\}$ on Z.

Reflexivity: Let a $\in Z$

Now.

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

$$a - a = 0 \times n$$

 $a - a$ is divisible by n

 $(a,a) \in R$

R is reflexive

Symmetric: Let $(a,b) \in R$

a-c=n(p+q)

a-c is divisible by n

R is symmetric

b - a is divisible by n

Transitive: Let $(a,b) \in R$ and $(b,c) \in R$

b-a=n(-p)

a-b=xp and b-c=xq For some p,q \in Z

a-b=np For some $p \in \mathbb{Z}$

R is transitive \Rightarrow

 $\{a,c\} \in R$

Thus, R being reflexive, symmetric and transitive on Z.

Relations Chapter 1 Ex 1.2 Q5

We have, Z be set of integers and

 $R = \{(a,b): a,b \in \mathbb{Z} \text{ and } a+b \text{ is even } \}$ be a relation on \mathbb{Z} .

We want to prove that \emph{R} is an equivalence relation on \emph{Z} .

[if a is even ⇒ a+a is even]

ifais odd ⇒ a+ais even

[if b is odd, then a and c must be odd $\Rightarrow a+c$ is even,

If b is even, then a and c must be even $\Rightarrow a+c$ is even

Now,

Reflexivity: Let $a \in Z$

 \Rightarrow

$$(a,a) \in R$$

a+a is even

Symmetric: Let $a,b \in Z$ and $(a,b) \in R$

$$\Rightarrow$$
 $b+a$ is even

$$\Rightarrow$$
 $(b,a) \in R$,

Transitivity: Let $(a,b) \in R$ and $(b,c) \in R$ For some $a,b,c \in Z$

$$(a,c) \in R$$

 \Rightarrow

Hence, R is an equivalence relation on Z

Let Z be set of integers

 $R = \{(m,n): m-n \text{ is divisible by } 13\}$ be a relation on Z.

Now,

 \Rightarrow

 \Rightarrow

Reflexivity: Let $m \in Z$

$$\Rightarrow m-m=0$$

$$(m,m) \in R$$

Symmetric: Let $m, n \in \mathbb{Z}$ and $(m, n) \in \mathbb{R}$

$$\Rightarrow$$
 $m-n=13.p$ For some $p \in Z$

$$\Rightarrow n-m=13\times(-p)$$

$$\Rightarrow$$
 $n-m$ is divisible by 13

$$\Rightarrow \qquad (n-m) \in R,$$

so

Transitivity: Let $(m,n) \in R$ and $(n,q) \in R$ For some $m,n,q \in Z$

$$\Rightarrow$$
 $m-n=13p$ and $n-q=13s$ For some p,s \in Z

$$\Rightarrow m-q=13(p+s)$$

$$\Rightarrow$$
 $m-q$ is divisible by 13

$$\Rightarrow$$
 $(m,q) \in R$

$$\Rightarrow$$
 R is transitive

Hence, R is an equivalence relation on Z

```
TPT Reflexive \therefore xy = yx
                     \therefore (x, y) R (x, y)
       Symmetric Let (x, y) R (u, v)
TPT
TPT (u, v) R(x, y)
Given xv = yu
\Rightarrow yu = xv
\Rightarrow uy = vx
       (u, v) R (x, y)
Transitive Let (x, y) R (u, v) and (u, v) R (p, q) .....(i)
xq = yp
       R is transitive
since R is reflexive symmetric & transitive all means it is an equivalence relation
```

 $(x, y) R (u, v) \Leftrightarrow xv = yu$

We have, $A = \{x \in z : 0 \le x \le 12\}$ be a set and

$$R = \{(a,b): a = b\}$$
 be a relation on A

Now,

Reflexivity: Let a < A

 \Rightarrow

 \Rightarrow

Symmetric: Let $a,b \in A$ and $(a,b) \in R$

b = a $\{b,a\} \in R$ \Rightarrow

R is symmetric

Transitive: Let a, b & c ∈ A and Let $(a,b) \in R$ and $(b,c) \in R$

a = b and b = c

a = c $\{a,c\} \in R$ \Rightarrow

R is transitive \Rightarrow

R is an equivalance relation. Also, we need to find the set of all elements related to 1.

Since R is being relfexive, symmetric and transitive, so

Since the relation is given by, $R=\{(a,b):a=b\}$, and 1 is an element of A,

 $R = \{(1,1):1=1\}$

Thus, the set of all elements related to 1 is 1.

(i) We have, L is the set of lines.

$$R = \{(L_1, L_2): L_1 \text{ is parallel to } L_2\}$$
 be a relation on L

Now,

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

Reflexivity: Let $L_1 \in L$

Since a line is always parallel to itself.

$$(L_1, L_2) \in R$$

Symmetric: Let
$$L_1, L_2 \in L$$
 and $(L_1, L_2) \in R$

$$L_1$$
 is parallel to L_2

⇒
$$L_2$$
 is parallel to L_1
⇒ $(L_1, L_2) \in R$

 L_1 is parallel to L_3

Where R is the set of real numbers.

 \Rightarrow

Transitive: Let L_1, L_2 and $L_3 \in L$

 $(L_1, L_3) \in R$

y = 2x + c For all $c \in R$

R is transitive

 L_1 is parallel to L_2 and L_2 is parallel to L_3

(ii) The set of lines parallel to the line y = 2x + 4 is

Since, R is reflexive, symmetric and transitive, so R is an equivalence relation.

such that $(L_1, L_2) \in R$ and $(L_2, L_3) \in R$

 $R = \{(P_1, P_2): P_1 \text{ and } P2 \text{ have same the number of sides}\}$

R is reflexive since $(P_{\mathfrak{b}}, P_{\mathfrak{t}}) \in R$ as the same polygon has the same number of sides with itself.

Let $(P_1, P_2) \in R$.

⇒ P₁ and P₂have the same number of sides.

⇒ P₂ and P₁ have the same number of sides.

$$\Rightarrow$$
 (P₂ P₁) \in R

∴R is symmetric.

Now,

Let (P_1, P_2) , $(P_2, P_3) \in R$.

 \Rightarrow P₁ and P₂ have the same number of sides. Also, P₂ and P3 have the same number of sides.

⇒ P1 and P3 have the same number of sides,

$$\Rightarrow$$
 (P₁, P3) \in R

Hence, R is an equivalence relation.

The elements in A related to the right-angled triangle (T) with sides 3, 4, and 5 are those polygons which have 3 sides (since T is a polygon with 3 sides).

Hence, the set of all elements in \triangle related to triangle T is the set of all triangles.

Let A be set of points on plane.

Let $R = \{(P,Q): OP = OQ\}$ be a relation on A where O is the origin.

To prove $\mathcal R$ is an equivalence relation, we need to show that $\mathcal R$ is reflexive, symmetric and transitive on $\mathcal A$.

Now,

Reflexivity: Let $p \in A$

Since
$$OP = OP \Rightarrow (P,P) \in R$$

Symmetric: Let $(P,Q) \in R$ for $P,Q \in A$

Then
$$OP = OQ$$

$$\Rightarrow$$
 $OQ = OP$

$$\Rightarrow$$
 $(Q,P) \in R$

Transitive: Let $(P,Q) \in R$ and $(Q,S) \in R$

$$\Rightarrow$$
 OP = OQ and OQ = OS

$$\Rightarrow OP = OQ \text{ and } OQ = OQ$$

$$\Rightarrow$$
 $(P,S) \in R$

Thus, R is an equivalence relation on A

elations Ex 1.2 Q12

Given $\triangle = \{1,2,3,4,5,6,7\}$ and $\mathbb{R} = \{(a,b): both \ a \ and \ b \ are \ either \ odd \ or \ even \ number\}$

Therefore,
$$R = \{(1,1),(1,3),(1,5),(1,6),(3,3),(3,5),(3,7),(5,5),(5,7),(7,7),(7,5),(7,3),(5,3),(6,1),(5,1),(3,1),$$

Form the relation Rit is seen that Ris symmetric, reflecive and transitive also. Therefore Ris an equivalent relation.

From the relation R it is seen that $\{1,3,5,7\}$ are related with each other only and $\{2,4,6\}$ are related with each other

$$S = \{(a,b): a^2 + b^2 = 1\}$$

Now,

Reflexivity: Let
$$a = \frac{1}{2} \in \mathbb{R}$$

Then,
$$a^2 + a^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \neq 1$$

 $\Rightarrow (a, a) \notin S$

Hence, S in not an equivalenve relation on R

We have, $\,\,$ Z be set of integers and $\,$ Z $_{0}$ be the set of non-zero integers.

$$R = \{(a,b)(c,d): ad = bc\}$$
 be a relation on $z \times z_0$

Now,

Reflexivity: $(a,b) \in Z \times Z_0$

$$\Rightarrow$$
 $((a,b),(a,b)) \in R$

Symmetric: Let
$$((a,b),(c,d)) \in R$$

$$\Rightarrow$$
 ad = bc

$$\Rightarrow$$
 $((c,d),(a,b)) \in R$

Transitive: Let
$$(a,b),(c,d) \in R$$
 and $(c,d),(e,f) \in R$

$$\Rightarrow$$
 ad = bc and cf = de

$$\Rightarrow \frac{a}{b} = \frac{c}{d} \text{ and } \frac{c}{d} = \frac{e}{f}$$

$$\Rightarrow \frac{a}{b} = \frac{\theta}{f}$$

$$\Rightarrow$$
 af = be

We have, Z be set of integers and Z_0 be the set of non-zero integers.

$$R = \{(a,b)(c,d): ad = bc\}$$
 be a relation on Z and Z_0 .

Now,

Reflexivity:
$$(a,b) \in Z \times Z_0$$

$$\Rightarrow$$
 $((a,b),(a,b)) \in R$

Symmetric: Let
$$((a,b),(c,d)) \in R$$

$$\Rightarrow$$
 ad = bc

$$\Rightarrow$$
 $((c,d),(a,b)) \in R$

Transitive: Let (a,b), $(c,d) \in R$ and (c,d), $(e,f) \in R$

- ad = bc and cf = de \Rightarrow
- $\frac{a}{b} = \frac{c}{d}$ and $\frac{c}{d} = \frac{e}{f}$
- \Rightarrow
- af = be \Rightarrow
- $(a,b)(e,f) \in R$ \Rightarrow
- \Rightarrow R is transitive

Hence, R is an equivalence relation on $Z \times Z_0$

Relations Ex 1.2 Q15.

R and S are two symmetric relations on set A

(i) To prove: R ∩ S is symmetric

Let $(a,b) \in R \cap S$

- $(a,b) \in R$ and $(a,b) \in S$
- [√R and S are symmetric] $(b,a) \in R$ and $(b,a) \in S$

[: R and S are symmetric]

- $(b,a) \in R \cap S$ \Rightarrow
- $R \wedge S$ is symmetric \Rightarrow

To prove: $R \cup S$ is symmetric.

Let $(a,b) \in R \cup S$

- $(a,b) \in R$ or $(a,b) \in S$
- $(b,a) \in R$ or $(b,a) \in S$ \Rightarrow
- $(b,a) \in R \cup S$ \Rightarrow
- $R \cup S$ is symmetric
- (ii) R and S are two relations on A such that R is reflexive.

To prove: $R \cup S$ is reflexive

Suppose $R \cup S$ is not reflexive.

This means that there is an $a \in R \cup S$ such that $(a, a) \notin R \cup S$

Since $a \in R \cup S$,

If $a \in R$, then $(a,a) \in R$ $[\because R \text{ is reflexive}]$

- $(a,a) \in R \cup S$
- Hence, $R \cup S$ is reflexive

We will prove this by means of an example.

Let $A = \{a, b, c\}$ be a set and

$$R = \left\{ \left(a,a\right)\left(b,b\right)\left(c,c\right)\left(a,b\right)\left(b,a\right) \right\} \text{ and }$$

$$S = \{(a, a)(b, b)(c, c)(b, c)(c, b)\}$$
 are two relations on

Clearly R and S are transitive relation on
$$A$$

Now,
$$R \cup S = \{(a,a)(b,b)(c,c)(a,b)(b,a)(b,c)(c,b)\}$$

Here, $(a,b) \in R \cup S$ and $(b,c) \in R \cup S$
but $(a,c) \notin R \cup S$

$$R \cup S$$
 is not transitive