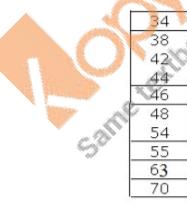
RD Sharma Solutions Class 11 Maths Chapter 32 Ex 32.1

Statistics Ex 32.1 Q1(i)

First arrange the given numbers in ascending order write these numbers in ascending order 3011, 2780, 3020, 2354, 3541, 4150, 5000 we get 2354, 2780, 3011, 3020, 3541, 4150, 5000


Clearly, the middle number is median, 3020

Calculation of Mean Deviations

x_i	$ d_i = x_i - 3020 $
3011	9
2780	240
3020	0
2354	666
3541	521
4150	1130
5000	1980
Total	$d_i = \sum x_i - 3020 = 4546$
$M.D = \frac{\sum d_i}{n} = \frac{4546}{7} =$	649.428
Statistics Ex 32.1 Q1(ii)	
Clearly, the middle obse	rvations are 46 and 48. So, median=47
	34 38 42

1.1 1

Statistics Ex 32.1 Q1(ii)

We have,

$$\sum |x_i - 47| = \sum d_i = 86$$

 $M.D = \frac{1}{D} \sum |d_i| = \frac{1}{10} [86] = 8.6$

Statistics Ex 32.1 Q1(iii)

Arranging the observations in ascending order of magnitude, we have

Clearly, the middle observations are 42 and 44. So, median = 43 We have, $\sum |x_i - 43| = \sum d_i = 87$

: M.D =
$$\frac{1}{n} \sum |d_i| = \frac{1}{10} [87] = 8.7$$

Statistics Ex 32.1 Q1(iv)

22
24
25
27
28
29
30
31
41
42

Clearly, the middle observations are 28 and 29 . So, median=28.5 Calculation of Mean Deviation

X-values	Deviation from Median
22	6.5
24	4.5
30	1.5
27	1.5 Lek's
29	0.5
31	Ct. 192.5
25	3.5
28	0.5
41	12.5
42	13.5
Total	47

Calculation of Mean Deviation

X-values	Deviation from Median				
38	9.5				
70	22.5				
48	0.5				
34	13.5				
63	15.5				
42	5.5				
55	7.5				
44	3.5				
53	5.5				
47	0.5				
Total	84				

We have,

$$\sum |x_i - 47.5| = \sum d_i = 84$$

$$M.D = \frac{1}{n} \sum |d_i| = \frac{1}{10} [84] = 8.4$$

Statistics Ex 32.1 Q2(i)

Mean =
$$\frac{1}{n} \sum |x_i| = \frac{80}{8} = 10$$

Calculation of Mean Deviation

X-values	Deviation From Mean
4	6
C 0 7	3
8	2
9	1
10	0
12	2
13	3
17	7
Total	24

We have,

$$\sum |x_i - 10| = \sum d_i = 24$$

$$M.D = \frac{1}{n} \sum |d_i| = \frac{1}{8} [24] = 3$$

Statistics Ex 32.1 Q2(ii)

Mean =
$$\frac{1}{n} \sum |x_i| = \frac{168}{12} = 14$$

Calculation of Mean Deviation

X-values	Deviation From Mean
13	1
17	3
16	2
14	0
11	3
13	1
10	4
16	2
11	3
18	4
12	2
17	3 1110
Total	28

We have,

$$\sum |x_i - 14| = \sum d_i = 28$$

M.D =
$$\frac{1}{n} \sum |d_i| = \frac{1}{12} [28] = 2.33$$

Statistics Ex 32.1 Q2(iii)

Mean =
$$\frac{1}{n} \sum |x_i| = \frac{500}{10} = 50$$

Calculation of Mean Deviation

X-values	Deviation From Mean			
38	12			
70	20			
48	2			
40	10			
42	8			
55	5			
63	13			
46	4			
54	4			
44	6			
Total	84			

We have,

$$\sum |x_i - 50| = \sum d_i = 84$$

$$\therefore \qquad \text{M.D} = \frac{1}{n} \sum |d_i| = \frac{1}{10} [84] = 8.4$$

Statistics Ex 32.1 Q2(iv)

Mean =
$$\frac{1}{n} \sum |x_i| = \frac{500}{10} = 50$$

Calculation of Mean Deviation

X-values	Deviation From Mean	
38	12	Page 1
70	20	Chaway
48	2	A Ch
40	10	N. Mark Control Control
42	8	HOOKE, KI
55	5	MOD
63	13	
46	4	
54	4	
44	6	
Total	84	

We have,

$$\sum \left| x_i - 50 \right| = \sum d_i = 72$$

$$\therefore \qquad M.D = \frac{1}{n} \sum |d_i| = \frac{1}{10} [72] = 7.2$$

Statistics Ex 32.1 Q2(v)

First arrange the given numbers in ascending order write these numbers in ascending order

we get 43, 44, 47, 49, 57, 59, 59, 61, 64, 67

Let X be the mean of given data, we get

$$X = \frac{43 + 44 + 47 + 49 + 57 + 59 + 59 + 61 + 64 + 67}{10} = 55$$

Calculation of Mean Deviations from mean

x_i	$ d_i = x_i - 55 $			
43	12			
44	11			
47	8			
49	6			
57	2			
59	4			
59	4			
61	6			
64	9			
67	12			
Total	74			
∇	200			

$$M.D = \frac{\sum d_i}{n} = \frac{74}{10} = 7.4$$

Statistics Ex 32.1 Q3

Arrange the given data for income group I in assending order, middle observation is 4400. So, median = 4400.

Mean deviation for group I

×i	$\left \mathbf{d_i} \right = \left \mathbf{x_i} - 4400 \right $		
4000	400		
4200	200		
4400	0		
4600	200		
4800	400		
Total	$\sum d_i = 1000$		

M.D. =
$$\frac{1}{n}\sum |d_i| = \frac{1000}{5} = 200$$

Arrange the given data for income group II in assending order, middle observation is 4400. So, median = 4400.

Mean deviation for group II

\times_{i}	$\left \mathbf{d_i} \right = \left \mathbf{x_i} - 4400 \right $		
3800	600		
4000	400		
4200	200		
4400	0		
4600	200		
4800	400		
5800	1400		
Total	$\sum d_i = 3200$		

M.D. =
$$\frac{1}{n}\sum |d_i| = \frac{3200}{7} = 457.14$$

Note: Answer given in the book is incorrect.

Statistics Ex 32.1 Q4

First arrange the given numbers in ascending order write these numbers in ascending order 40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2 we get 15.2, 27.9, 30.2, 32.5, 40.0, 52.3, 52.8, 55.2, 72.9, 79.0

Clearly, Median =
$$\frac{40.0+52.3}{2}$$
 = 46.15

Let \overline{X} be the mean of given data, we get

$$\overline{X} = \frac{15.2 + 27.9 + 30.2 + 32.5 + 40.0 + 52.3 + 52.8 + 55.2 + 72.9 + 79.0}{10} = 45.8$$

Calculation of Mean Deviations from mean and median

$$x_i$$
 $|d_i| = |x_i - 46.15|$
 $|d_i| = |x_i - 45.8|$

 40.0
 6.15
 5.8

 52.3
 6.15
 6.5

 55.2
 9.05
 9.4

 72.9
 26.75
 27.1

 52.8
 6.65
 7

 79.0
 32.85
 33.2

 32.5
 13.65
 13.3

 15.2
 30.95
 30.6

 27.9
 19.25
 17.9

 30.2
 15.95
 15.6

 Total
 167.4
 166.4

(i) M.D =
$$\frac{\sum d_i}{n} = \frac{167.4}{10} = 16.74$$

(ii) M.D =
$$\frac{\sum d_i}{n} = \frac{166.4}{10} = 16.64$$

Statistics Ex 32.1 Q5(i)

Mean =	$\frac{1}{n} \Sigma x_i $	455	=	45.5
	$n^{\mu}r^{\eta}$	10		.0.0

X-values	Deviation From Mean
34	11.5
66	20.5
30	15.5
38	7.5
44	1.5
50	4.5
40	5.5
60	14.5
42	3.5
51	5.5
Total	90

$$\sum |x_i - 45.5| = \sum d_i = 90$$

$$\therefore \qquad \text{M.D} = \frac{1}{n} \sum |d_i| = \frac{1}{10} [90] = 9$$

$$\overline{X}$$
 – M.D = 45.5 – 9 = 36.5

$$\overline{X}$$
 + M.D = 45.5 + 9 = 54.5

Mean =
$$\frac{1}{n} \sum |x_i| = \frac{299}{10} = 29.9$$

We have,			
$\sum x_i - 45.5 = \sum d_i$			
$\therefore \qquad M.D = \frac{1}{n} \sum d_j = \frac{1}{10}$	[90]= 9	C CAMP	
Now, \overline{X} - M.D = 45.5 - 9 = 36.5 \overline{X} + M.D = 45.5 + 9 = 54.5	5	nd X+M.D.	
X + M.D = 45.5 + 9 = 54.5		Mrs.	
∴ 6 observations (ie betw	een \overline{X} – M.D ar	$\overline{X} + M.D.$	
Statistics Ex 32.1 Q5(ii)	Secretary of the second	.e.	
Mean = $\frac{1}{n} \sum x_i = \frac{299}{10} = 29.9$	een \overline{X} - M.D. ar		
n ' ' 10			
		5 5 1	
	X-values	Deviation From Mean	
	22	7.9	
	22 24 30	5.9 0.1	
	30		
	27	2.9	
	29	0.9	
	31	1.1	
	25	4.9	
	28	1.9	
	41	11.1	
	I /I')	171	
	42 Total	12.1 48.8	

We have,

$$\sum |x_j - 29.9| = \sum d_j = 48.8$$

$$\therefore \qquad \text{M.D} = \frac{1}{n} \sum |d_i| = \frac{1}{10} [48.8] = 4.88$$

Now,

$$\overline{X}$$
 - M.D = 29.9 - 4.88 = 25.02 \overline{X} + M.D = 29.9 + 4.88 = 34.78

$$\therefore$$
 5 observations lie between \overline{X} – M.D and \overline{X} + M.D.

Statistics Ex 32.1 Q5(iii)

Mean =
$$\frac{1}{n} \sum |x_i| = \frac{494}{10} = 49.4$$

We have,

$$\sum |x_i - 49.4| = \sum d_i = 86.8$$

$$\therefore \qquad \text{M.D} = \frac{1}{n} \sum |d_i| = \frac{1}{10} [86.8] = 8.68$$

Now,

$$\overline{X}$$
 - M.D = 49.4 - 8.68 = 40.72

$$\overline{X}$$
 +M.D = 49.4 + 8.68 = 58.08

$$\therefore$$
 6 observations lie between \overline{X} – M.D and \overline{X} + M.D.

Statistics Ex 32.1 Q6

$$\sigma = \sqrt{\frac{1}{n} \sum (x_i - \bar{x})^2}$$

$$\sigma' = \sqrt{\frac{1}{n} \sum x_i^2 - \bar{x}^2}$$

$$(x_i - \bar{x})^2 = x_i^2 + \bar{x}^2 - 2x_i \bar{x}$$

$$\sum 2x_i \bar{x} = 2\bar{x} \sum x_i = 2n\bar{x}^2$$

$$\frac{1}{n} \sum (x_i - \bar{x})^2 = \frac{\sum (x_i^2 + \bar{x}^2 - 2x_i \bar{x})}{n}$$

$$= \frac{\sum x_i^2 + \sum \bar{x}^2 - \sum 2x_i \bar{x}}{n}$$

$$= \frac{1}{n} \sum x_i^2 + \frac{n\bar{x}^2 - 2n\bar{x}^2}{n}$$

$$= \frac{1}{n} \sum x_i^2 - \bar{x}^2$$