RD Sharma Solutions Class 11 Maths Chapter 27 Ex 27.1

Hyperbola Ex 27.1 Q1

Let S(-1,1) be the focus and P(x,y) be a point on the hyperbola Draw PM perpendicular from P on the directrix. Then, by definition.

$$SP = \ThetaPM$$

$$SP^{2} = \Theta^{2}PM^{2}$$

$$\Rightarrow (x+1)^{2} + (y-1)^{2} = (3)^{2} \left[\frac{x-y+3}{\sqrt{1^{2} + (-1)^{2}}} \right]^{2}$$

$$\Rightarrow x^{2} + 1 + 2x + y^{2} + 1 - 2y = \frac{9[x-y+3]^{2}}{2}$$

$$\Rightarrow 2[x^{2} + y^{2} + 2x - 2y + 2] = 9[x-y+3]^{2}$$

$$\Rightarrow 2x^{2} + 2y^{2} + 4x - 4y + 4 = 9[x^{2}(-y)^{2} + 3^{2} + 2 \times x \times (-y) + 2 \times (-y) \times 3 + 2 \times 3 \times x]$$

$$\Rightarrow 2x^{2} + 2y^{2} + 4x - 4y - 4 = 9[x^{2} + y^{2} + 9 - 2xy - 6y + 6x]$$

$$\Rightarrow 2x^{2} + 2y^{2} + 4x - 4y + 4 = 9x^{2} + 9y^{2} + 81 - 18xy - 54y + 4y + 81 - 4 = 0$$

$$\Rightarrow 7x^{2} + 7y^{2} - 18xy + 50x - 50y + 77 = 0$$

This is the required equation of the hyperbota

Hyperbola Ex 27.1 Q2(i)

Let S(0,3) be the focus and P(x,y) be a point on the hyperbola. Draw PM perpendicular from P on the directrix. Then, by definition

$$sP = \Theta PM$$

$$\Rightarrow sP^{2} = \Theta^{2}PM^{2}$$

$$\Rightarrow (x - 0)^{2} + (y - 3)^{2} = 2^{2} \left[\frac{x + y - 1}{\sqrt{1^{2} + 1^{2}}} \right]^{2}$$

$$\Rightarrow x^{2} + y^{2} + 9 - 6y = \frac{4[x + y - 1]^{2}}{2}$$

$$\Rightarrow x^{2} + y^{2} - 6y + 9 = 2(x + y - 1)^{2}$$

$$\Rightarrow x^{2} + y^{2} - 6y + 9 = 2[x^{2} + y^{2} + (-1)^{2} + 2xy + 2 \times y \times (-1) + 2 \times (-1) \times x]$$

$$\Rightarrow x^{2} + y^{2} - 6y + 9 = 2[x^{2} + y^{2} + 1 + 2xy - 2y - 2x]$$

$$\Rightarrow x^{2} + y^{2} - 6y + 9 = 2x^{2} + 2y^{2} + 2 + 4xy - 4y - 4x$$

$$\Rightarrow 2x^{2} - x^{2} + 2y^{2} - y^{2} + 4xy - 4x - 4y + 6y + 2 - 9 = 0$$

$$\Rightarrow x^{2} + y^{2} + 4xy - 4x + 2y - 7 = 0$$

This is the required equation of the hyperbola.

Hyperbola Ex 27.1 Q2(ii)

Let S(1,1) be the focus and P(x,y) be a point on the hyperbola. Draw PM perpendicular from P on the directrix. Then, by definition

$$sP = \theta PM$$

$$sP^{2} = e^{2}PM^{2}$$

$$\Rightarrow (x-1)^{2} + (y-1)^{2} = 2^{2} \left[\frac{3x + 4y + 8}{\sqrt{3^{2} + 4^{2}}} \right]^{2} \qquad [\because \theta = 2]$$

$$\Rightarrow x^{2} + 1 - 2x + y^{2} + 1 - 2y = 4 \left[\frac{3x + 4y + 8}{\sqrt{25}} \right]$$

$$\Rightarrow x^{2} + y^{2} - 2x - 2y + 2 = \frac{4(3x + 4y + 8)^{2}}{25}$$

$$\Rightarrow 25x^{2} + 25y^{2} - 50x - 50y + 50 = 4(3x + 4y + 8)^{2}$$

$$\Rightarrow 25x^{2} + 25y^{2} - 50x - 50y + 50 = 4 \left[9x^{2} + 16y^{2} + 6y + 24xy + 64y + 48x \right]$$

$$\Rightarrow 25x^{2} + 25y^{2} - 50x - 50y + 50 = 36x^{2} + 64y^{2} + 256 + 96xy + 256y + 192x$$

$$\Rightarrow 36x^{2} - 25x^{2} + 64y^{2} - 25y^{2} + 96xy + 192x + 50x + 256y + 50x + 256 - 50 = 0$$

$$\Rightarrow 11x^{2} + 39y^{2} + 96xy + 242x + 306y + 206 = 0$$

This is the required equation of the hyperbola.

Hyperbola Ex 27.1 Q2(iii)

Let S(1,1) be the focus and P(x,y) be a point on the hyperbola. Draw PM perpendicular from P on the directrix. Then, by definition

$$\begin{array}{l} sP = ePM \\ sP^2 = e^2PM^2 \\ \Rightarrow \qquad (x-1)^2 + (y-1)^2 = \left\{\sqrt{3}\right\}^2 \left[\frac{2x+y-1}{\sqrt{2^2+1^2}}\right]^2 \\ \Rightarrow \qquad (x-1)^2 + (y-1)^2 = \left\{\sqrt{3}\right\}^2 \left[\frac{2x+y-1}{\sqrt{2^2+1^2}}\right]^2 \\ \Rightarrow \qquad x^2 + 1 - 2x + y^2 + 1 - 2y = \frac{3[2x+y-1]^2}{5} \\ \Rightarrow \qquad 5\left[x^2 + y^2 - 2x - 2y + 2\right] = 3\left(2x + y - 1\right)^2 \\ \Rightarrow \qquad 5x^2 + 5y^2 - 10x - 10y + 10 = 3\left[\left(2x\right)^2 + y^2 + \left(-1\right)^2 + 2 \times 2x \times y + 2 \times y \times \left(-1\right) + 2 \times \left(-1\right) \times 2x\right] \\ \Rightarrow \qquad 5x^2 + 5y^2 - 10x - 10y + 10 = 3\left[4x^2 + y^2 + 1 + 4xy - 2y - 4x\right] \\ \Rightarrow \qquad 5x^2 + 5y^2 - 10x - 10y + 10 = 12x^2 + 3y^2 + 3 + 12xy - 6y - 12x \\ \Rightarrow \qquad 12x^2 - 5x^2 + 3y^2 - 5y^2 + 12xy - 12x + 10x - 6y + 10y + 3 - 10 = 0 \\ \Rightarrow \qquad 7x^2 - 2y^2 + 12xy - 2x + 4y - 7 = 0 \end{array}$$

This is the required equation of the hyperbola.

Hyperbola Ex 27.1 Q2(iv)

Let S(2,-1) be the focus and P(x,y) be a point on the hyperbola. Draw PM perpendicular from P on the directrix. Then, by definition

$$sP = ePM$$

$$sP^{2} = e^{2}pM^{2}$$

$$\Rightarrow (x-2)^{2} + (y+1)^{2} = 2^{2} \left[\frac{2x+3y-1}{\sqrt{2^{2}+3^{2}}} \right]^{2} \qquad [\because e=2]$$

$$\Rightarrow x^{2} + 4 - 4x + y^{2} + 1 + 2y = \frac{4[2x+3y-1]^{2}}{13}$$

$$\Rightarrow 13 \left[x^{2} + y^{2} - 4x + 2y + 5 \right] = 4(2x+3y-1)^{2}$$

$$\Rightarrow 13x^{2} + 13y^{2} - 52x + 26y + 65 = 4[2x+3y-1]^{2}$$

$$\Rightarrow 13x^{2} + 13y^{2} - 52x + 26y + 65 = 4[(2x)^{2} + (3y)^{2} + (-1)^{2} + 2 \times 2x \times 3y + 2 \times 3y \times (-1) + 2 \times (-1) \times 2x]$$

$$\Rightarrow 13x^{2} + 13y^{2} - 52x + 26y + 65 = 4[4x^{2} + 9y^{2} + 1 + 12xy - 6y - 4x]$$

$$\Rightarrow 13x^{2} + 13y^{2} - 52x + 26y + 65 = 16x^{2} + 36y^{2} + 4 + 48xy - 24y - 16x$$

$$\Rightarrow 16x^{2} - 13x^{2} + 36y^{2} - 13y^{2} + 48xy - 16x + 52x - 24y - 26y + 4 - 65 = 0$$

$$\Rightarrow 3x^{2} + 23y^{2} + 48xy + 36x - 50y - 61 = 0$$
This is the required equation of the hyperbola.

Hyperbola Ex 27.1 Q2(v)

This is the required equation of the hyperbola.

Hyperbola Ex 27.1 Q2(v)

Let S(a,0) be the focus and P(x,y) be a point on the hyperbola. Draw PM perpendicular from P on the directrix. Then, by definition

$$SP = \theta PM$$

$$SP^{2} = \theta^{2}PM^{2}$$

$$\Rightarrow (x - a)^{2} + (y - 0)^{2} = \left(\frac{4}{3}\right)^{2} \left[\frac{2x - y + a^{2}}{\sqrt{2^{2} + (-1)^{2}}}\right]^{2}$$

$$\Rightarrow x^{2} + a^{2} - 2ax + y^{2} = \frac{16}{9} \times \frac{[2x - y + a]^{2}}{5}$$

$$\Rightarrow 45 \left[x^{2} + y^{2} - 2ax + a^{2}\right] = 16 \left[2x - y + a\right]^{2}$$

$$\Rightarrow 45x^{2} + 45y^{2} - 90ax + 45a^{2} = 16 \left[(2x)^{2} + (-y)^{2} + a^{2} + 2 \times 2x (-y) + 2 \times (-y) \times a + 2 \times a \times 2x\right]$$

$$\Rightarrow 45x^{2} + 45y^{2} - 90ax + 45a^{2} = 16 \left[4x^{2} + y^{2} + a^{2} - 4xy - 2ay + 4ax\right]$$

$$\Rightarrow 45x^{2} + 45y^{2} - 90ax + 45a^{2} = 64x^{2} + 16y^{2} + 16a^{2} - 64xy - 32ay + 64ax$$

$$\Rightarrow 64x^{2} - 45x^{2} + 16y^{2} - 45y^{2} - 64xy + 64ax + 90ax - 32ay + 16a^{2} - 45a^{2} = 0$$

$$\Rightarrow 19x^{2} - 29y^{2} - 64xy + 154ax - 32ay - 29a^{2} = 0$$

This is the required equation of the hyperbola.

Hyperbola Ex 27.1 Q2(vi)

Let S(2,2) be the focus and P(x,y) be a point on the hyperbola. Draw PM perpendicular from P on the directrix. Then, by definition

$$SP = \ThetaPM$$

$$SP^{2} = \Theta^{2}PM^{2}$$

$$(x-2)^{2} + (y-2)^{2} = 2^{2} \left[\frac{x+y-9}{\sqrt{1^{2}+1^{2}}} \right]^{2} \qquad \left[\because \Theta = \frac{4}{3} \right]$$

$$X^{2} + 4 - 4x + y^{2} + 4 - 4y = \frac{4[x+y-9]^{2}}{2}$$

$$X^{2} + y^{2} - 4x - 4y + 8 = 2[x+y-9]^{2}$$

$$X^{2} + y^{2} - 4x - 4y + 8 = 2[x^{2} + y^{2} + (-9)^{2} + 2 \times x \times y + 2 \times y \times (-9) + 2 \times (-9) \times x]$$

$$X^{2} + y^{2} - 4x - 4y + 8 = 2[x^{2} + y^{2} + 81 + 2xy - 18y + 18x]$$

$$X^{2} + y^{2} - 4x - 4y + 8 = [2x^{2} + 2y^{2} + 162 + 4xy - 36y - 36x]$$

$$X^{2} + y^{2} - 4x - 4y + 8 = [2x^{2} + 2y^{2} + 162 + 4xy - 36y - 36x]$$

$$2x^{2} - x^{2} + 2y^{2} - y^{2} + 4xy - 36x + 4x - 36y + 4y + 162 - 8 = 0$$

$$X^{2} + y^{2} + 4xy - 32x - 32y + 154 = 0$$

This is the required equation of the hyperbola.

Hyperbola Ex 27.1 Q3(i)

$$9x^{2} - 16y^{2} = 144$$

$$\Rightarrow \frac{9x^{2}}{144} - \frac{16y^{2}}{144} = 1$$

$$\Rightarrow \frac{x^{2}}{16} - \frac{y^{2}}{16} = 1$$

This is of the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, where $a^2 = 16$ and $b^2 = 9$. Eccentricity: The eccentricity e is given by $e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{9}{16}}$ $= \sqrt{\frac{25}{16}}$

$$\Theta = \sqrt{1 + \frac{b^2}{\sigma^2}}$$

$$= \sqrt{1 + \frac{9}{16}}$$

$$= \sqrt{\frac{25}{16}}$$

$$= \frac{5}{4}$$

Foci: The coordinates of the foci are (±ae,0) i.e., (±5,0)

Equations of the directrices: The equations of the directrices are

$$x = \pm \frac{a}{e} \text{ i.e., } x = \pm \frac{16}{5}$$

$$5x = \pm 16$$

$$5x \mp 16 = 0$$

Length of latus-rectum: The length of the latus-rectum

$$=\frac{2b^2}{a}=\frac{2\times 9}{4}=\frac{9}{2}$$

Hyperbola Ex 27.1 Q3(ii)

We have.

$$16x^2 - 9y^2 = -144$$

$$\Rightarrow \frac{16x^2}{144} - \frac{9y^2}{144} = -1$$

$$\Rightarrow \frac{x^2}{9} - \frac{y^2}{16} = -1$$

This is of the form
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$
, where $a^2 = 9$ and $b^2 = 16$

Eccentricity: The eccentricity e is given by

$$e = \sqrt{1 + \frac{a^2}{b^2}}$$

$$= \sqrt{1 + \frac{9}{16}}$$

$$= \sqrt{\frac{25}{16}}$$

$$= \frac{5}{4}$$

Foci: The coordinates of the foci are (0, ±be).

$$(0,\pm be) = \left(0,\pm 4 \times \frac{5}{4}\right)$$

the coordinates of the foci are
$$(0,\pm 5)$$

Equations of the directrices: The equations of the directrices are $y = \frac{\pm b}{e}$

$$y = \frac{\pm t}{e}$$

$$\Rightarrow y = \pm \frac{4}{5} = \pm \frac{16}{5}$$

Latus-rectum: The length of the latus-rectum

$$=\frac{2a^2}{b}$$

$$=\frac{2\times 9}{4}=\frac{9}{2}$$

Hyperbola Ex 27.1 Q3(iii)

We have,

$$4x^2 - 3y^2 = 36$$

$$\Rightarrow \frac{4x^2}{36} - \frac{3y^2}{36} = 1$$

$$\Rightarrow \frac{x^2}{9} - \frac{y^2}{12} = 1$$

This is of the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$, where $a^2 = 9$ and $b^2 = 12$

∴
$$a = 3$$
 and $b = \sqrt{12} = 2\sqrt{3}$

Eccentricity: The eccentricity e is given by

$$e = \sqrt{1 + \frac{b^2}{a^2}}$$
$$= \sqrt{1 + \frac{12}{9}}$$
$$= \sqrt{1 + \frac{4}{3}}$$
$$= \sqrt{\frac{7}{3}}$$

Foci: The coordinates of the foci are $(\pm ae, 0)$.

$$\pm ae = \pm 3 \times \sqrt{\frac{7}{3}}$$

$$= \pm 3 \times \frac{\sqrt{7}}{\sqrt{3}}$$

$$= \pm \sqrt{3} \times \sqrt{7}$$

$$= \pm \sqrt{21}$$

$$(\pm ae, 0) = (\pm \sqrt{21}, 0)$$

the coordinates of the foci are
$$(\pm\sqrt{21},0)$$

Equations of the directrices: The equations of the directrices are

$$x = \frac{\pm a}{e}$$

$$x = \pm 3 \times \frac{1}{\sqrt{7}}$$

$$= \pm \frac{3\sqrt{3}}{\sqrt{7}}$$

$$\Rightarrow \quad \sqrt{7} \times \mp 3\sqrt{3} = 0$$

 $\therefore \qquad \text{The equations of the directrices are } \sqrt{7}x \mp 3\sqrt{3} = 0$

Latus-rectum: The length of the latus-rectum

$$=\frac{2b^2}{a}=\frac{2\times12}{3}=8$$

Hyperbola Ex 27.1 Q3(iv)

We have,

$$3x^2 - y^2 = 4$$

$$3x^2 - y^2 - 1$$

$$\Rightarrow \frac{x^2}{4} - \frac{y^2}{4} = 3$$

$$\Rightarrow \frac{x^2}{\left(\frac{2}{2}\right)^2} - \frac{y^2}{2^2} =$$

This is of the form
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, where $a = \frac{2}{\sqrt{3}}$ and $b = 2$
Eccentricity: The eccentricity e is given by
$$e = \sqrt{1 + \frac{b^2}{2}}$$

$$e = \sqrt{1 + \frac{b^2}{a^2}}$$

$$= \sqrt{1 + \frac{7}{4}}$$

Foci: The coordinates of the foci are (±ae,0)

$$\pm ae = \pm \frac{2}{\sqrt{3}} \times 2 = \pm \frac{4}{\sqrt{3}}$$

The coordinates of the foci are $\left(\pm \frac{4}{\sqrt{3}}, 0\right)$

Equations of the directirices: The equations of the directrices are

$$x = \pm \frac{\partial}{\partial \theta}$$

$$= \pm \frac{2}{\sqrt{3}}$$

$$= \pm \frac{1}{\sqrt{3}}$$

$$\Rightarrow \sqrt{3}x \mp 1 = 0$$

Latus-rectum: The length of the latus-rectum = $\frac{2b^2}{a}$.

$$\therefore \frac{2b^2}{a} = 2 \times \frac{4}{\frac{2}{\sqrt{3}}}$$
$$= 4\sqrt{3}$$

Hyperbola Ex 27.1 Q3(v)

Hyperbola Ex 27.1 Q4

We have,

$$25x^{2} - 36y^{2} = 225$$

$$\Rightarrow \frac{25x^{2}}{225} - \frac{36^{2}}{225} = 1$$

$$\Rightarrow \frac{x^{2}}{9} - \frac{4y^{2}}{25} = 1$$

$$\Rightarrow \frac{x^2}{9} - \frac{y^2}{\frac{25}{4}} = 1$$

$$\Rightarrow \frac{x^2}{\left(3\right)^2} - \frac{y^2}{\left(\frac{5}{2}\right)^2} = 1$$

This is of the form
$$\frac{x^2}{a^2} - \frac{y^2}{h^2} = 1$$
, where $a = 3$ and $b = \frac{5}{2}$

Length of the transverse axis: The length of the transverse axis

$$= 2 \times 3 = 6$$

Length of the conjugate axis: The length of the conjugate axis is

$$2b = 2 \times \frac{5}{2} = 5$$

Eccentricity: The eccentricity e is given by

$$e = \sqrt{1 + \frac{b^2}{a^2}}$$

$$= \sqrt{1 + \frac{25}{4}}$$

$$= \sqrt{1 + \frac{25}{36}}$$

$$= \sqrt{\frac{61}{36}}$$

$$= \frac{\sqrt{61}}{6}$$
Length of LR= $\frac{2b^2}{a} = \frac{25}{6}$
Foci $(\pm \frac{\sqrt{61}}{2}, 0)$

We have,

$$16x^{2} - 9y^{2} + 32x + 36y - 164 = 0$$

$$\Rightarrow 16x^{2} + 32x - 9y^{2} + 36y - 14 = 0$$

$$\Rightarrow 16(x^{2} + 2x) - 9(y^{2} + 4y) - 164 = 0$$

$$\Rightarrow 16[x^{2} + 2x + 1 - 1] - 9[y^{2} - 4y + 4 - 4] - 164 = 0$$

$$\Rightarrow 16[(x + 1)^{2} - 1] - 9[(y - 2)^{2} - 4] - 164 = 0$$

$$\Rightarrow 16(x + 1)^{2} - 16 - 9(y - 2)^{2} + 36 - 164 = 0$$

$$\Rightarrow 16(x + 1)^{2} - 9(y - 2)^{2} + 20 - 164 = 0$$

$$\Rightarrow 16(x + 1)^{2} - 9(y - 2)^{2} - 144 = 0$$

$$\Rightarrow 16(x + 1)^{2} - 9(y - 2)^{2} = 144$$

$$\Rightarrow \frac{16(x + 1)^{2}}{144} - \frac{9(y - 2)^{2}}{144} = 1$$

$$\Rightarrow \frac{(x + 1)^{2}}{144} - \frac{(y - 2)}{16} = 1$$
---(i)

Shifting the origin at (-1,2) without rotating the coordinate axes and denoting the new coordinates with respect to the new axes by X and y,

---(i)

We have.

$$X = X - 1$$
 and $Y = Y + 2$

This is of the form $\frac{\chi^2}{a^2} - \frac{Y^2}{b^2} = 1$, where $a^2 = 9$ and $b^2 = 16$. so,

We have,

Centre: The coordinates of the centre w.r.t the new axes are (X = 0, Y = 0)

$$\therefore \qquad x = -1 \text{ and } y = 2 \qquad \qquad \text{[Using equation (ii)]}$$

So, the coordinates of the centre w.r.t the old axes are (-1,2).

Eccentricity: The ecentricity e is given by
$$e = \sqrt{1 + \frac{b^2}{a^2}}$$

$$= \sqrt{1 + \frac{16}{9}}$$

$$= \sqrt{\frac{25}{9}}$$

Foci: The coordinates of the foci with respect to the new axes are given by $(X = \pm ae, Y = 0)$ i.e., $(X = \pm 5, Y = 0)$.

Putting $X = \pm 5$ and Y = 0 in equation (ii), we get

$$x = \pm 5 - 1$$
 and $y = 0 + 2$

 \Rightarrow x = 4, -6 and y = 2

Equation of the directix: The equations of the directirx are

$$X = \pm \frac{a}{e}$$

$$= \pm \frac{3}{5}$$

$$X = \pm \frac{9}{5}$$

Putting
$$X = \pm \frac{9}{5}$$
 in equation (ii), we get

$$x = \pm \frac{9}{5} - 1$$

$$\Rightarrow \qquad x = \frac{\pm 9 - 5}{5}$$

$$\Rightarrow x = \frac{4}{5} \text{ and } x = \frac{-14}{5}$$

$$\Rightarrow$$
 5x - 4 = 0 and 5x + 14 = 0

So, the equations of the directrices w.r.t the old axes are

$$5x - 4 = 0$$
 and $5x + 14 = 0$.

Hyperbola Ex 27.1 Q5(ii)

We have,

We have,

We have,

 $x^2 - v^2 + 4x = 0$

 $x^2 + 4x - v^2 = 0$

 \Rightarrow $x^2 + 4x + 4 - 4 - y^2 = 0$

 $\Rightarrow (x+2)^2 - y^2 = 4$

 $\frac{(x+2)^2}{4} - \frac{y^2}{4} = 1$

coordinates w.r.t these axes by X and y,

Using these relations, equation (i) reduces to

Putting X = 0 and Y = 0 in equation (ii), we get

x = -2 and y = 0.

This is of the form $\frac{\chi^2}{a^2} - \frac{\chi^2}{b^2} = 1$, where $a^2 = 4$ and $b^2 = 4$. so,

So, the coordinates of the centre w.r.t the old axes are (-2,0).

Centre: The ∞ ordinates of the centre w.r.t the new axes are (X = 0, Y = 0)

X = X - 2 and V = Y

Shifting the origin at (-2,0) without rotating the axes and denoting the new

---(i)

Eccentricity: The ecentricity e is given by

$$e = \sqrt{1 + \frac{b^2}{a^2}}$$
$$= \sqrt{1 + \frac{4}{4}}$$
$$= \sqrt{1 + 1}$$
$$= \sqrt{2}$$

Foci: The coordinates of the foci w.r.t the new axes are $(X = \pm ae, Y = 0)$ i.e., $(X = \pm 2\sqrt{2}, Y = 0)$.

Putting $X = \pm 2\sqrt{2}$ and Y = 0 in equation (ii), we get

$$x = \pm 2\sqrt{2} - 2 \text{ and } y = 0$$

$$\Rightarrow x = -2 \pm 2\sqrt{2} \text{ and } v = 0$$

So, the coordinates of foci w.r.t the old axes are $\left(-2\pm2\sqrt{2},0\right)$

$$X = \pm \frac{\partial}{\partial x}$$
 i.e., $X = \pm \frac{2}{\sqrt{2}}$

Putting
$$X = \pm \frac{2}{\sqrt{2}}$$
 in equation (ii), we get

$$X = \pm \frac{2}{\sqrt{2}} - 2$$

$$\Rightarrow X + 2 = \pm \frac{\sqrt{2} \times \sqrt{2}}{\sqrt{2}}$$

So, the equations of the directrices w.r.t to the old axes are $x + 2 = \pm \sqrt{2}$.

Hyperbola Ex 27.1 Q5(iii)

We have.

 $x^2 - 3y^2 - 2x = 8$

 $\Rightarrow (x-1)^2 - 1 - 3y^2 = 8$

 $\frac{(x-1)^2}{9} - \frac{3y^2}{9} = 1$

 $\frac{(x-1)^2}{9} - \frac{y^2}{3} = 1$

X = X + 1 and V = Y

 $\frac{\chi^2}{2} - \frac{\gamma^2}{2} = 1$

x = 1 and y = 0.

We have,

 $\Rightarrow (x-1)^2 - 3y^2 = 9$

 $\Rightarrow x^2 - 2x - 3y^2 = 8$

 \Rightarrow $x^2 - 2x + 1 - 1 - 3y^2 = 8$

coordinates w.r.t these axes by X and y, We have,

This is of the form $\frac{\chi^2}{a^2} - \frac{\chi^2}{b^2} = 1$, where $a^2 = 9$ and $b^2 = 3$. so,

So, the coordinates of the centre w.r.t the old axes are (1,0).

Using these relations, equation (i) reduces to

Putting X = 0 and Y = 0 in equation (ii), we get

Shifting the origin at (1,0) without rotating the axes and denoting the new

Centre: The coordinates of the centre w.r.t the new axes are (X = 0, Y = 0)

Eccentricity: The ecentricity e is given by

$$e = \sqrt{1 + \frac{b^2}{a^2}}$$

$$= \sqrt{1 + \frac{3}{9}}$$

$$= \sqrt{1 + \frac{1}{3}}$$

$$= \sqrt{\frac{4}{3}}$$

$$= \frac{2}{\sqrt{3}} \times \sqrt{3}$$

$$= \frac{2\sqrt{3}}{3}$$

Foci: The coordinates of the foci w.r.t the new axes are $(X = \pm ae, Y = 0)$ i.e., $(X = \pm 2\sqrt{5}, Y = 0)$

Putting $X = \pm 2\sqrt{3}$ and Y = 0 in equation (ii), we get

$$x = \pm 2\sqrt{3} + 1 \text{ and } y = 0$$

$$\Rightarrow x = 1 \pm 2\sqrt{3} \text{ and } y = 0$$

So, the coordinates of foci w.r.t the old axes are $[1\pm2\sqrt{3},0]$

Directrices: The equations of the directrices w.r.t the new axes are

$$X = \pm \frac{a}{e}$$
 i.e., $X = \pm \frac{3}{2\sqrt{3}} = \pm \frac{9}{2\sqrt{3}}$

Putting $X = \pm \frac{9}{2\sqrt{3}}$ in equation (ii), we get

$$X = \pm \frac{9}{2\sqrt{3}} + 1$$

$$\Rightarrow x = \pm \frac{9}{2\sqrt{3}}$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \qquad ---(i)$$

Then,

Distance between the foci = 16

[: Distance between foci = 2ae]

$$\Rightarrow a \times \sqrt{2} = 8$$

$$[\because e = \sqrt{2}]$$

$$\Rightarrow$$
 $a = \frac{8}{\sqrt{2}}$

$$\Rightarrow a^2 = \frac{64}{2} = 32$$

Now,

$$b^{2} = a^{2} (e^{2} - 1)$$

$$= 32 ((\sqrt{2})^{2} - 1)$$

$$= 32 \times (2 - 1)$$

$$= 32$$

$$\frac{x^2}{32} - \frac{y^2}{32} = 1$$

$$\Rightarrow x^2 - y^2 = 32$$

$$= 32 \left(\left[\sqrt{2} \right] - 1 \right)$$

$$= 32 \times (2 - 1)$$

$$= 32$$
Putting $a^2 = 32$ and $b^2 = 32$ in equation (i), we get
$$\frac{x^2}{32} - \frac{y^2}{32} = 1$$

$$\Rightarrow x^2 - y^2 = 32$$
Hence, the equation of the required hyperbola is $x^2 + y^2 = 32$.

Hyperbola Ex 27.1 Q6(ii)
Let the equation of the hyperbola be
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \qquad ---(i)$$
Then,

Then,

The length of the conjugate axis = 2b

$$\Rightarrow$$
 $b = \frac{5}{2}$

$$\Rightarrow$$
 $b^2 = \frac{25}{4}$

And, the distance between foci = 2ae

$$\Rightarrow \qquad a^2e^2 = \frac{169}{4}$$

$$b^2 = a^2 \left(e^2 - 1\right)$$

$$\Rightarrow \frac{25}{4} = a^2 e^2 - a^2$$

$$\Rightarrow \frac{25}{4} = \frac{169}{4} - \tilde{\sigma}^2$$

$$\Rightarrow \qquad a^2 = \frac{169}{4} - \frac{25}{4}$$

$$\Rightarrow \qquad a^2 = \frac{169 - 25}{4}$$

$$\Rightarrow a^2 = \frac{144}{4} = 36$$

$$\Rightarrow a^{2} = \frac{144}{4} = 36$$
Putting $a^{2} = 36$ and $b^{2} = \frac{25}{4}$ in equation (i), we get
$$\frac{x^{2}}{36} - \frac{y^{2}}{\frac{25}{4}} = 1$$

$$\Rightarrow \frac{x^{2}}{36} - \frac{4y^{2}}{25} = 1$$

$$\Rightarrow \frac{x^2}{36} - \frac{4y^2}{25} = 1$$

$$\Rightarrow$$
 25 x^2 - 144 y^2 = 900

Hence, the equation of the required hyperbola is $25x^2 - 144y^2 = 900$.

Hyperbola Ex 27.1 Q6(iii)

Let the equation of the hyperbola be

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 ---(i)

Then.

The length of the conjugate axis = 2b

$$2b = 7 [\because Conjugate axis is = 5]$$

$$b = \frac{7}{2}$$

$$b^2 = \frac{49}{4}$$
 ---(ii)

The required hyperbola passes through the point (3, -2).

$$\therefore \qquad \frac{\left(3\right)^2}{a^2} - \frac{\left(-2\right)^2}{b^2} = 1$$

$$\Rightarrow \qquad \frac{\partial}{\partial^2} - \frac{y}{49} = 1$$

$$\Rightarrow \frac{9}{a^2} - \frac{16}{49} = 1$$

$$\Rightarrow \frac{9}{a^2} = 1 + \frac{16}{49}$$

$$\Rightarrow \frac{1}{a^2} = \frac{1}{49}$$

$$\Rightarrow \frac{1}{a^2} = \frac{49 \times 9}{49}$$

$$\Rightarrow \qquad a^2 = \frac{49 \times 9}{65}$$

$$\Rightarrow \qquad a^2 = \frac{441}{65}$$

Putting
$$a^2 = \frac{441}{65}$$
 and $b^2 = \frac{49}{4}$ in equation (i), we get

$$\frac{\frac{x^2}{441} - \frac{y^2}{49}}{65} = 1$$

$$\Rightarrow \frac{65x^2}{441} - \frac{4y^2}{49} = 1$$

$$\Rightarrow \frac{65x^2 - 36y^2}{441} = 1$$

$$\Rightarrow$$
 65x² - 36y² = 441

Hence, the equation of the required hyperbola is $65x^2 - 36y^2 = 441$.

Hyperbola Ex 27.1 Q7(i)

The centre of the hyperbola is the mid-point of the line joining the two foci.

So, the coordinates of the centre are $\left(\frac{6-4}{2}, \frac{4+4}{2}\right)$ i.e., (1,4).

Let 2a and 2b be the length of transverse and conjugate axes and let e be the eccentricity. Then, the equation of the hyperbola is

$$\frac{(x-1)^2}{a^2} - \frac{(y-4)^2}{b^2} = 1$$
 ---(i)

Now, distance between two foci = 2ae

$$\Rightarrow \sqrt{(6+4)^2 + (4-4)^2} = 2ae$$

$$\Rightarrow \sqrt{(10)^2} = 2ae$$

$$\Rightarrow 10 = 2ae$$

$$\Rightarrow 2ae = 10$$

$$[\because Foci = (6,4) \text{ and } (-4,4)]$$

[∵e = 2]

$$\Rightarrow a = \frac{10}{4}$$

$$\Rightarrow a = \frac{5}{2}$$

$$\Rightarrow$$
 $a^2 = \frac{25}{4}$

Now,

$$b^{2} = a^{2} (e^{2} - 1)$$

$$\Rightarrow b^{2} = \frac{25}{4} (2^{2} - 1)$$

$$= \frac{25}{4} (4 - 1)$$

$$= \frac{25}{4} \times 3 = \frac{75}{4}$$

Registron Residents of the Charles o Putting $a^2 = \frac{25}{4}$ and $b^2 = \frac{75}{4}$ in equation (i), we get

$$\frac{(x-1)^2}{\frac{25}{4}} - \frac{(y-4)^2}{\frac{75}{4}} = 1$$

$$\Rightarrow \frac{4(x-1)^2}{25} - \frac{4(y-4)^2}{75} = 1$$

$$\Rightarrow \frac{4 \times 3(x-1)^2 - 4(y-4)^2}{75} = 1$$

$$\Rightarrow 12(x-1)^2 - 4(y-4)^2 = 75$$

$$\Rightarrow 12[x^2 + 1 - 2x] - 4[y^2 + 16 - 8y] = 75$$

$$\Rightarrow 12x^2 + 12 - 24x - 4y^2 - 64 + 32y = 75$$

$$\Rightarrow 12x^2 - 4y^2 - 24x + 32y - 52 - 75 = 0$$

$$\Rightarrow 12x^2 - 4y^2 - 24x + 32y - 127 = 0$$

This is the equation of the required hyperbola.

Hyperbola Ex 27.1 Q7(ii)

The centre of the hyperbola is the mid-point of the line line joining the two vertices.

So, the coordinates of the centre are
$$\left(\frac{16-8}{2}, \frac{-1-1}{2}\right)$$
 i.e., $\left(4,-1\right)$.

Let 2a and 2b be the length of transverse and conjugate axes and let e be the eccentricity. Then, the equation of the hyperbola is

$$\frac{(x-4)^2}{a^2} - \frac{(y+1)^2}{b^2} = 1$$
 ---(i)

Now,

The distance between two vertices = 2a

$$\sqrt{(16+8)^2 + (-1+1)^2} = 2ae \qquad [\because \text{ vertices} = (-8,-1) \text{ and } (16,-1)]$$

$$\Rightarrow 24 = 2a$$

$$\Rightarrow a = 12$$

$$\Rightarrow a^2 = 144$$

and, the distance between the focus and vertex is = ae - a

and, the distance between the focus and vertex is = ae - a

$$\sqrt{(17-16)^2 + (-1+1)^2} = ae - a$$

$$\Rightarrow \sqrt{1^2} = ae - a$$

$$\Rightarrow ae - a = 1$$

$$\Rightarrow 12 \times e - 12 = 1$$

$$\Rightarrow 12e = 1 + 12$$

$$\Rightarrow e = \frac{13}{12}$$

$$\Rightarrow e^2 = \frac{169}{144}$$
Now,
$$b^2 = a^2 \left(e^2 - 1\right)$$

$$= (12)^2 \left(\frac{169}{144} - 1\right)$$

$$= 144 \times \left(\frac{169 - 144}{144}\right)$$

$$= 144 \times \frac{25}{144}$$

Putting $a^2 = 144$ and $b^2 = 25$ in equation (i), we get

$$\frac{(x-4)^2}{144} - \frac{(y+1)^2}{25} = 1$$

$$\Rightarrow \frac{25(x-4)^2 - 144(y+1)^2}{3600} = 1$$

$$\Rightarrow 25[x^2 + 16 - 8x] - 144[y^2 + 1 + 2y] = 3600$$

$$\Rightarrow 25x^2 + 400 - 200x - 144y^2 - 144 - 288y = 3600$$

$$\Rightarrow 25x^2 - 144y^2 - 200x - 288y + 256 = 3600$$

$$\Rightarrow 25x^2 - 144y^2 - 200x - 288y - 3344 = 0$$

This is the equation of the required hyperbola.

Hyperbola Ex 27.1 Q7(iii)

The centre of the hyperbola is the mid-point of the line line joining the two foci.

So, the coordinates of the centre are $\left(\frac{4+8}{2}, \frac{2+2}{2}\right)$ i.e., (6,2).

Let 2a and 2b be the length of transverse and conjugate axes and let e be the eccentricity. Then, the equation of the hyperbola is

[∵e = 2]

$$\frac{(x-6)^2}{a^2} - \frac{(y-2)^2}{b^2} = 1$$
 ---(i)

Now, distance between two foci = 2ae

$$\Rightarrow \sqrt{(8-4)^2+(2-2)^2} = 2ae$$
 [: Foci = (4,2) and (8,2)]

$$\Rightarrow \sqrt{(4)^2} = 2ae$$

$$\Rightarrow a = \frac{4}{4} = 1$$

$$\Rightarrow a^2 = 1$$

Now,

$$b^2 = a^2 (e^2 - 1)$$

$$\Rightarrow b^2 = 1(2^2 - 1)$$

$$\Rightarrow$$
 $b^2 = 4 - 1$

$$\Rightarrow$$
 $b^2 = 3$

Now,

$$b^2 = a^2(e^2 - 1)$$

$$\Rightarrow b^2 = 1(2^2 - 1)$$

$$\Rightarrow b^2 = 4 - 1$$

$$\Rightarrow b^2 = 3$$

Putting $a^2 = 1$ and $b^2 = 3$ in equation (i), we get

$$\frac{(x-6)^2}{1} - \frac{(y-2)^2}{3} = 1$$

$$\Rightarrow \frac{3(x-6)^2-(y-2)^2}{3}=1$$

$$\Rightarrow$$
 3(x - 6)² - (y - 2)² = 3

$$\Rightarrow 3[x^2 + 36 - 12x] - [y^2 + 4 - 4y] = 3$$

$$\Rightarrow$$
 $3x^2 + 108 - 36x - y^2 - 4 + 4y = 3$

$$\Rightarrow 3x^2 - y^2 - 36x + 4y + 101 = 0$$

This is the equation of the required hyperbola.

Hyperbola Ex 27.1 Q7(iv)

Since, the vertices are on y-axis, so let the equation of the required hyperbola is

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 \qquad ---(i)$$

The coordinates of its vertices and foci are $(0,\pm b)$ and $(0,\pm be)$ respectively.

$$b = 7$$
 [vertices = (0, ±7)]
$$b^2 = 49$$

and.

and,
$$be = \frac{28}{3} \qquad \left[v \operatorname{Fod} = \left(0, \pm \frac{28}{3} \right) \right]$$

$$\Rightarrow 7 \times e = \frac{28}{3}$$

$$\Rightarrow e = \frac{4}{3}$$

$$\Rightarrow e^2 = \frac{16}{3}$$

Now,

$$a^{2} = b^{2} \left(e^{2} - 1\right)$$

$$\Rightarrow a^{2} = 49 \left(\frac{16}{9} - 1\right)$$

$$\Rightarrow a^{2} = 49 \times \frac{7}{9}$$

$$\Rightarrow a^{2} = \frac{343}{9}$$

Putting $a^2 = \frac{343}{9}$ and $b^2 = 49$ in equation (i), we get

$$\frac{x^2}{\frac{343}{9}} - \frac{y^2}{49} = -$$

Hyperbola Ex 27.1 Q8

Putting $a^2 = \frac{343}{9}$ and $b^2 = 49$ in equation (i), we get $\frac{x^2}{\frac{343}{9}} - \frac{y^2}{49} = -1$ This is the equation of the required hyperbola.

The least to a facility and a set of a point of the conjugate axes and eight between the contricity. Then, The length of conjugate axis = $\frac{3}{4}$ [length of transverse axis]

$$\Rightarrow 2b = \frac{3}{4} \times (2a)$$

$$\Rightarrow \frac{b}{a} = \frac{3}{4}$$

$$\Rightarrow \frac{b^2}{a^2} = \frac{9}{16}$$

Now,

$$e = \sqrt{1 + \frac{b^2}{a^2}}$$

$$= \sqrt{1 + \frac{9}{16}}$$

$$= \sqrt{\frac{25}{16}}$$

$$= \frac{5}{4}$$

Hence,
$$e = \frac{5}{4}$$

Hyperbola Ex 27.1 Q9(i)

Let (x_2, y_2) be the coordinates of the second vertex.

We know that, the ventre of the hyperbola is the mid-point of the line-joining the two vertices.

$$\therefore \frac{x_1+4}{2} = 3 \text{ and } \frac{y_1+2}{2} = 2$$

$$\Rightarrow x_1=2 \text{ and } y_2=2$$

$$[\because \text{Centre} = (3,2) \text{ and vertiex} = (4,2)]$$

.. The coordinates of the second vertex is (2,2)

Let 2a and 2b be the length of transverse and conjugate axes and let e be eccentricity. Then, the equation of hyperbola is

$$\frac{(x-3)^2}{a^2} - \frac{(y-2)^2}{b^2} = 1$$
 ---(i)

Now, distance between the two vertices = 2a

$$\Rightarrow \sqrt{(4-2)^2 + (2-2)^2} = 2a$$

$$\Rightarrow \sqrt{2^2} = 2a$$

$$\Rightarrow 2a = 2$$

$$\Rightarrow a = 1$$
[: Vertices = (4,2) and (2,2)]

Nwo, the distance between the vertex and focusis = 20 - 2

$$\Rightarrow \sqrt{(5-4)^2 + (2-2)^2} = 2e - a$$

$$\Rightarrow \sqrt{1} = ae - a$$

$$\Rightarrow ae - a = 1$$

$$\Rightarrow 1 \times e - 1 = 1$$

$$\Rightarrow e = 1 + 1 = 2$$
[\$\times \text{Focus} = (5,2) \text{ and vertex} = (4,2)\$]

Now, $b^{2} = a^{2} (a^{2} - 1)$ $= a^{2} (2^{2} - 1)$ $= 1 \times (4 - 1)$ $= 1 \times 3$ = 3

Putting $a^2 = 1$ and $b^2 = 3$ n equation (i), we get

$$\Rightarrow \frac{(x-3)^2}{1} - \frac{(y-2)^2}{3} = 1$$

$$\Rightarrow \frac{3(x-3)^2 - (y-2)^2}{3} = 1$$

$$\Rightarrow 3(x-3)^2 - (y-2)^2 = 3$$

This is the equation of the required hyperbola.

Hyperbola Ex 27.1 Q9(ii)

Let (x_1, y_1) be the coordinates of the second focus of the required hyperbola.

We know that, the ventre of the hyperbola is the mid-point of the line-joining the two foci.

$$\therefore \frac{x_1+4}{2} = 6 \text{ and } \frac{y_1+2}{2} = 2$$

$$\Rightarrow x_1 = 8 \text{ and } y_2 = 2$$

$$[\because \text{Centre} = (6,2) \text{ and focus} = (4,2)]$$

The coordinates of the second focus is (8,2)

Let 2a and 2b be the length of transverse and conjugate axes and let e be the eccentricity. Then, the equation of hyperbola is

$$\frac{(x-6)^2}{a^2} - \frac{(y-2)^2}{b^2} = 1$$
 ---(i)

Now, distance between the two vertices = 2æ

$$\Rightarrow \sqrt{(8-4)^2 + (2-2)^2} = 2ae$$

$$\Rightarrow \sqrt{2^2} = 2a$$

$$\Rightarrow 2a = 2$$

$$\Rightarrow a = 1$$
[: foci = (4,2) and (8,2)]

Nwo, the distance between the vertex and focus is = ae -a

$$\Rightarrow \sqrt{(5-4)^2 + (2-2)^2} = ae - a$$

$$\Rightarrow \sqrt{(4)^2} = 2ae$$

$$\Rightarrow 2ae = 4$$

$$\Rightarrow 2 \times a \times 2 = 4$$

$$\Rightarrow a = 1$$

$$\Rightarrow a^2 = 1$$
Now,
$$b^2 = a^2 (e^2 - 1)$$

Now.

$$b^{2} = a^{2} \left(e^{2} - 1\right)$$

$$\Rightarrow b^{2} = 1 \left(2^{2} - 1\right)$$

$$= 1 \left(4 - 1\right)$$

$$= 3$$

$$\Rightarrow b^{2} = 3$$

Putting $a^2 = 1$ and $b^2 = 3$ n equation (i), we get

$$\Rightarrow \frac{(x-6)^2}{1} - \frac{(y-2)^2}{3} = 1$$

$$\Rightarrow \frac{3(x-6)^2 - (y-2)^2}{3} = 1$$

$$\Rightarrow 3(x-6)^2 - (y-2)^2 = 3$$

This is the equation of the required hyperbola.

Hyperbola Ex 27.1 Q10

For a hyperbole if the length of semi transverse and semi conjugate axes are equal. Then a = bEquation of the given hyperbole is $x^2 - y^2 = a^2$(1) Then $e = \sqrt{2}$, C = (0, 0), $S = (\sqrt{2}a, 0)$, $S' = (-\sqrt{2}a, 0)$ Let coordinates of any point P on hyperbole be (α, β) . Since P lies on (1) ? $\alpha^2 - \beta^2 = \alpha^2 \dots (2)$ Now $SP^2 = (\sqrt{2}a - \alpha)^2 + \beta^2 = 2a^2 + \alpha^2 + \beta^2 - 2\sqrt{2}a\alpha$ and $S'P^2 = -(-\sqrt{2}a - \alpha)^2 + \beta^2 = 2a^2 + \alpha^2 + \beta^2 + 2\sqrt{2}a\alpha$ Now SP^2 . $SP^2 = (2a^2 + a^2 + \beta^2)^2 - 8a^2\alpha^2$ $= 4a^4 + 4a^2(\alpha^2 + \beta^2) + (\alpha^2 + \beta^2)^2 - 8a^2\alpha^2$ $= 4a^2(\alpha^2 - 2\alpha^2) + 4a^2(\alpha^2 + \beta^2) + (\alpha^2 + \beta^2)^2$ $= 4a^2(\alpha^2 - \beta^2 - 2\alpha^2) + 4a^2(\alpha^2 + \beta^2) + (\alpha^2 + \beta^2)^2$ $= (\alpha^2 + \beta^2)^2 = CP^4$

$$SP. S'P = CP^2$$

Hyperbola Ex 27.1 Q11(i)

Let the equation of hyperbola be

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 --- (i)

The coordinates of its vertices and foci are (±a, 0) and (±ae, 0) respectively.

 $a^2 = 4$ \Rightarrow and,

$$\Rightarrow e = \frac{3}{2}$$

Now.

$$b^2 = a^2 \left(e^2 - 1\right)$$

$$\Rightarrow b^2 - 2^2 \left[\left(\frac{3}{2}\right)^2 - 1\right]$$

$$\Rightarrow b^2 = 4 \left[\frac{9}{4} - 1 \right]$$

$$\Rightarrow b^2 = 4\left[\frac{9-4}{4}\right]$$
$$= 4 \times \frac{5}{4}$$

Putting $a^2 = 4$ and $b^2 = 5$ in equation (1), we get

$$\frac{x^2}{4} - \frac{y^2}{5} = 1$$

Hence, the equation of the required hyperbola is $\frac{x^2}{4} - \frac{y^2}{5} = 1$.

Hyperbola Ex 27.1 Q11(ii)

Since, the vertices line on y-axis, so let the equation of the required hyperbola be

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$
 ---(

The coordinates of its vertices and foci are $(0,\pm b)$ and $(0,\pm be)$ respectively.

$$b = 5$$

$$\Rightarrow$$
 $b^2 - 25$

and,
$$be = 8$$

$$\left[\because \mathsf{Foci} = \left(0, \pm 8\right)\right]$$

$$e^2 = \frac{64}{25}$$

Now,

$$a^2 = b^2 \left(e^2 - 1 \right)$$

$$\Rightarrow a^2 = 25\left(\frac{64}{25} - 1\right)$$

$$\Rightarrow a^2 = 25 \times \frac{39}{25}$$

$$\Rightarrow a^2 = 39$$

Putting
$$a^2 = 39$$
 and $b^2 = 25$ in equation (i), we get

$$\frac{x^2}{39} - \frac{y^2}{25} = -1$$

Hence, the equaton of the required hyperbola is

$$\frac{x^2}{39} - \frac{y^2}{25} = -1.$$

Since, the vertices line on y-axis, so let the equation of the required hyperbola be

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$
 --- (

The coordinates of its vertices and foci are $(0,\pm b)$ and $(0,\pm be)$ respectively.

$$b = 3 \qquad \qquad [v \text{ vertices} = (0, \pm 3)]$$

and,
$$be = 5$$
 $\left[\because Foci = (0, \pm 5) \right]$

$$\Rightarrow e \times 3 = 5$$

$$\Rightarrow e = \frac{5}{2}$$

$$\Rightarrow$$
 $e^2 = \frac{25}{9}$

Now,

$$\theta^{2} = b^{2} \left(\theta^{2} - 1\right)$$

$$\Rightarrow \qquad \theta^{2} = 9\left(\frac{25}{9} - 1\right)$$

$$= 9 \times \left(\frac{25 - 9}{9}\right)$$

$$= 9 \times \frac{16}{9}$$

= 16

and lenthooks, the death of Putting $a^2 = 16$ and $b^2 = 9$ in equatoin (i), we get

$$\frac{x^2}{16} - \frac{y^2}{9} = -1$$

Hence, the equaton of the required hyperbola is

$$\frac{x^2}{16} - \frac{y^2}{9} = -1.$$

Hyperbola Ex 27.1 Q11(iv)

Since, the vertices line on x-axis, so let the equation of the required hyperbola be

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 ---(i)

The length of transverse axis = 8

 $a^2 - 16$

This coordinates of foci of the required hyperbola is (±ae,0)

$$\begin{array}{ll} \therefore & \text{ae} = 5 & \left[v \text{ fod} = (\pm 5, 0) \right] \\ \Rightarrow & 4 \times e = 5 & \left[v \text{ ae} = 4 \right] \\ \Rightarrow & e = \frac{5}{4} \\ \Rightarrow & e^2 = \frac{25}{16} \end{array}$$

Now,

$$b^{2} = a^{2} \left(e^{2} - 1 \right)$$
$$= 16 \left(\frac{25}{16} - 1 \right)$$
$$= 16 \times \frac{9}{16}$$
$$= 9$$

Putting $a^2 = 16$ and $b^2 = 9$ in equation (i), we get

$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

Hence, the equation of the required hyperbola is

$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$
.

Hyperbola Ex 27.1 Q11(v)

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$
 ---(i)

The length of conjugater axis of the required hyperbola is 24.

∴ 2a = 24 [∵ conjugate axis is 2a]

⇒ $a = \frac{24}{2} = 12$

$$\Rightarrow$$
 $a^2 - 144$

This coordinates of foci of the required hyperbola is $(0,\pm be)$

$$be = 13$$

 $b^2e^2 = 169$

Now,

$$a^2 = b^2 \left(e^2 - 1\right)$$

$$\Rightarrow$$
 144 = $b^2e^2 - b^2$

$$\Rightarrow$$
 144 = 169 - b^2

$$\Rightarrow$$
 $b^2 = 169 - 144 = 25$

Putting $a^2 = 144$ and $b^2 = 25$ in equation (i), we get

$$\frac{x^2}{144} - \frac{y^2}{25} = -1$$

Hence, the equation of the required hyperbola is

$$\frac{x^2}{144} - \frac{y^2}{25} = -1$$
.

Hyperbola Ex 27.1 Q11(vi)

Since, the vertices line on x-axis, so let the equation of the required hyperbola be

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 --- (i)

The length of conjugater axis of the required hyperbola is 8.

$$\frac{2b^2}{a} = 8$$

$$\Rightarrow b^2 = \frac{8}{2} \times a$$

$$\Rightarrow b^2 = 4a \qquad ---(ii)$$

Now,

This coordinates of foci of the required hyperbola is (±ae,0)

∴
$$ae = 3\sqrt{5}$$
 $\left[\because Fod = \left(\pm 3\sqrt{5}, 0\right)\right]$
⇒ $e = \frac{3\sqrt{5}}{a}$
⇒ $e^2 = \frac{45}{a^2}$ ---(iii)

Now,

$$b^2 = a^2 \left(e^2 - 1\right)$$

$$\Rightarrow 4a = a^2e^2 - a^2$$

$$\Rightarrow 4a = a^2 \times \frac{45}{a^2} - a^2$$

$$\Rightarrow$$
 4a = 45 - a²

$$\Rightarrow a^2 + 4a - 45 = 0$$

$$\Rightarrow$$
 $a^2 + 9a - 5a - 45 = 0$

$$\Rightarrow a(a+9)-5(a+9)=0$$

$$\Rightarrow$$
 $(a-5)(a+9)=0$

$$\Rightarrow a^2 = 25$$

$$\Rightarrow$$
 $b^2 = 4 \times 5$ [Using equation (ii)]

$$\Rightarrow$$
 $b^2 = 20$

Putting $a^2 = 25$ and $b^2 = 20$ in equation (i), we get

$$\frac{x^2}{25} - \frac{y^2}{20} = 1$$

Hence, the equation of the required hyperbola is

$$\frac{x^2}{25} - \frac{y^2}{20} = 1$$
.

Hyperbola Ex 27.1 Q11(vii)

Since, the vertices line on x-axis, so let the equation of the required hyperbola be

[∵a+9≠0]

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 ---(i)

The length of the latus-rectum of the required hyperbola is 12

$$\frac{2b^2}{a} = 12$$

$$\Rightarrow b^2 = 6a \qquad ---(ii)$$

Now,

The coordinates of foci of the required hyperbola is $(\pm ae, 0)$

$$e = 4$$

$$\Rightarrow e = \frac{4}{a}$$

$$\Rightarrow e^2 = \frac{16}{a^2}$$
---(iii)

$$b^2 = a^2 \left(e^2 - 1\right)$$

$$\Rightarrow 6a = a^2e^2 - a^2$$

$$\Rightarrow 6a = a^2 \times \frac{16}{a^2} - a^2$$

$$\Rightarrow a^2 + 6a - 16 = 0$$

$$\Rightarrow a^2 + 8a - 2a - 16 = 0$$

$$\Rightarrow a(a+8)-2(a+8)=0$$

$$\Rightarrow a^2 = 4$$

$$\Rightarrow$$
 $b^2 = 6 \times 2 = 12$

Putting $a^2 = 4$ and $b^2 = 12$ in equation (i)

$$\frac{x^2}{4} - \frac{y^2}{12} = 1$$

Hence, the equation of the required hyperbola is

$$\frac{x^2}{4} - \frac{y^2}{12} = 1.$$

[Using equation (ii)]

Since, the vertices line on x-axis, so let the equation of the required hyperbola be

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 ---(i)

The length of the vertices of the required hyperbola are (±a,0).

$$a = 7 \qquad [\because \text{ vertices} = (\pm 7, 0)]$$

$$\Rightarrow a^2 = 49 \qquad ---(ii)$$

$$b^{2} = a^{2} \left(e^{2} - 1\right)$$

$$\Rightarrow b^{2} = 49 \left[\left(\frac{4}{3}\right)^{2} - 1\right]$$

$$\Rightarrow b^2 = 49 \left[\frac{16}{9} - 1 \right]$$

$$\Rightarrow b^2 = 49 \left[\frac{7}{9} \right]$$

$$\Rightarrow b^2 = \frac{343}{9}$$

Putting
$$a^2 = 49$$
 and $b^2 = \frac{343}{9}$ in equation (i), we get

$$\frac{x^2}{49} - \frac{y^2}{\frac{343}{9}} = 1$$

Hence, the equation of the required hyperbola is

 $\frac{x^2}{49} - \frac{9y^2}{343} = 1$

 $\frac{x^2}{49} - \frac{9y^2}{343} = 1.$

Since, the vertices line on y-axis, so let the equation of the required hyperbola be

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$
 ---(i)

It passes through (2,3)

$$\frac{(2)^2}{a^2} - \frac{(3)^2}{b^2} = -1$$

$$\Rightarrow \frac{4}{a^2} - \frac{9}{b^2} = -1$$

$$\Rightarrow \frac{4}{a^2} - \frac{9}{a^2 (e^2 - 1)} = -1$$

$$\Rightarrow \frac{4}{a^2} - \frac{9}{a^2 e^2 - a^2} = -1$$

$$[\because b^2 = a^2 (e^2 - 1)]$$

$$\Rightarrow \frac{4}{a^2} - \frac{9}{a^2 e^2 - a^2} = -1$$

$$---(ii)$$

The coordinates of foci of the required hyperbola are (0, ±ae).

$$\begin{array}{ll} \therefore & ae = \sqrt{10} \\ \Rightarrow & a^2e^2 = 10 \end{array}$$

Putting $a^2e^2 = 10$ in equation (ii), we get

$$\Rightarrow \quad a^2e^2 = 10 \qquad ----(iii)$$
Putting $a^2e^2 = 10$ in equation (ii), we get
$$\frac{4}{a^2} - \frac{9}{10 - a^2} = -1$$

$$\Rightarrow \quad \frac{4(10 - a^2) - 9(a^2)}{a^2(10 - a^2)} = -1$$

$$\Rightarrow \quad \frac{40 - 4a^2 - 9a^2}{10a^2 - a^4} = -1$$

$$\Rightarrow \quad 40 - 13a^2 = -10a^2 + a^4$$

$$\Rightarrow \quad a^4 + 3a^2 - 40 = 0$$

$$\Rightarrow \quad a^4 + 8a^2 - 5a^2 - 40 = 0$$

$$\Rightarrow \quad a^2(a^2 + 8) - 5(a^2 + 8) = 0$$

$$\Rightarrow \quad a^2(a^2 + 8) - 5(a^2 + 8) = 0$$

$$\Rightarrow \quad a^2 - 5 = 0$$

$$\Rightarrow \quad a^2 - 5 = 0$$

$$\Rightarrow \quad a^2 - 5 = 0$$

$$\Rightarrow \quad a^2 = 5$$

$$\Rightarrow \quad a^2 = 5$$

$$\Rightarrow \quad ----(iv)$$

Now,

$$b^2 = a^2 \left(e^2 - 1\right)$$

$$= a^2 e^2 - a^2$$

$$= 10 - 5$$

$$= 5$$
[Using equation (iii) and (iv)]

Putting $a^2 = 5$ and $b^2 = 5$ in equation (i), we get

$$\frac{x^2}{5} - \frac{y^2}{5} = -1$$

Hence, the equation of the required hyperbola is

$$\frac{x^2}{5} - \frac{y^2}{5} = -1.$$

Hyperbola Ex 27.1 Q11(x)

Since, the vertices lie on x-axis, so let the equation of the required hyperbola be

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$
(i)

The length of the latus-rectum of the required hyperbola is 36.

$$\frac{2a^2}{b} = 36$$
 $a^2 = 18b$ ----(ii

Now,

The coordinates of foci of the required hyperbola is $(0, \pm be)$.

$$b\epsilon = 12$$

$$\epsilon = \frac{12}{b}$$

$$\epsilon^2 = \frac{144}{b^2}$$

Now.

$$a^{2} = b^{2} (e^{2} - 1)$$

$$18b = b^{2} \left(\frac{144}{b^{2}} - 1\right)$$

$$18b = 144 - b^{2}$$

$$b^{2} + 18b - 144 = 0$$

$$(b - 6)(b + 24) = 0$$

 $b_{1,2} = 6, -24$ Consider the positive value of b = 6.

On putting $b^2 = 36$, $a^2 = 18(6) = 108$ in equation (i), we get

$$\frac{x^2}{108} - \frac{y^2}{36} = -1$$

$$\frac{x^2 - 3y^2}{108} = -1$$

$$x^2 - 3y^2 = -108$$

$$3y^2 - x^2 = 108$$

Therefore, the equation of the hyperbola is $3y^2 - x^2 = 108$.

Hyperbola Ex 27.1 Q12

Eccentricity = $e = \sqrt{2}$

Distance between foci is

Distance between foci is
$$2ae = 16$$

 $2a\sqrt{2} = 16$

$$2a\sqrt{2} = 16$$

$$a = \frac{16}{2\sqrt{2}} = 4\sqrt{2}$$

$$e = \frac{\sqrt{a^2 + b^2}}{2\sqrt{2}}$$

$$\frac{+b}{a}$$
 $32+b^2$

$$\sqrt{2} = \frac{\sqrt{32 + b^2}}{4\sqrt{2}}$$

$$8 = \sqrt{32 + b^2}$$

$$64 = 32 + b^2$$

$$b^2 = 32$$
Equation of hyperbola is
$$\frac{x^2}{32} - \frac{y^2}{32} = 1$$

Hyperbola Ex 27.1 Q13

Distance of
$$P(x,y)$$
 from $(4,0) = \sqrt{2}$

Equation of hyperbola is
$$\frac{x^2}{32} - \frac{y^2}{32} = 1$$

Rewriting we get, $x^2 - y^2 = 32$
Hyperbola Ex 27.1 Q13
Let P (x,y) be a point of the set.
Distance of P(x,y) from $(4,0) = \sqrt{(x-4)^2 + y^2}$
Distance of P(x,y) from $(-4,0) = \sqrt{(x+4)^2 + y^2}$
Difference between distance = 2
 $\sqrt{(x-4)^2 + y^2} - \sqrt{(x+4)^2 + y^2} = 2$
 $\sqrt{(x-4)^2 + y^2} = 2 + \sqrt{(x+4)^2 + y^2}$
Squaring both sides, we get,
 $(x-4)^2 + y^2 = 4 + 4\sqrt{(x+4)^2 + y^2} + (x+4)^2 + y^2$
 $(x-4)^2 + y^2 - (x+4)^2 - y^2 = 4 + 4\sqrt{(x+4)^2 + y^2}$
 $(x-4)^2 + y^2 - (x+4)^2 - y^2 = 4 + 4\sqrt{(x+4)^2 + y^2}$

 $(x-4-x-4)(x-4+x+4) = 4 + 4\sqrt{(x+4)^2 + y^2}$

$$(x,0) = \sqrt{(x-4,0)} = \sqrt{(x-4,0)}$$

set.

$$(x-4)^2 + y^2$$

$$(x+4)^2 + y^2$$

$$(4)^2 + y^2$$

Squaring both sides, we get, $16x^2 + 8x + 1 = x^2 + 8x + 16 + y^2$

 $-16x-4=4\sqrt{(x+4)^2+y^2}$

 $-4x-1 = \sqrt{(x+4)^2 + y^2}$

 $15x^2 - y^2 = 15$