RD Sharma Solutions Class 11 Maths Chapter 23 Ex 23, 2, and a second second

Straight Lines Ex 23.2 Q1

Let the equation of the line be:

$$y - y_1 = m(x - x_1)$$

Now,

$$m = 0$$

[... Parallel lines have equal slopes, the slope of x-axis is 0]

$$(x_1, y_1) = (3, -5)$$

$$y - y_1 = m(x - x_1)$$

$$y - (-5) = 0(x - 3)$$

$$v + 5 = 0$$

Straight Lines Ex 23.2 Q2

The slope of x-axis is 0, any line perpendicular to it will have

slope =
$$\frac{-1}{0}$$

Also the required line is passing through the point (-2, 0)

(because it is given it has x-intercept is -2)

The required equation of line is

$$y - y_1 = m(x - x_1)$$

where
$$m = \frac{-1}{0}, (x_1y_1) \Rightarrow (-2, 0)$$

$$y - 0 = \frac{-1}{0} (x - (-2))$$

$$y - 0 = \frac{-1}{0} (x + 2)$$

$$-(x+2)=0$$

$$x + 2 = 0$$

Straight Lines Ex 23.2 Q3

The slope of x -axis is 0

Any line parallel to x-axis will also have the same slope.

therefore m = 0

Also line has y - intercept, ie. (0,b)

$$\Rightarrow$$
 (0, -2) \Rightarrow (x_1y_1)

The required equation of the line is $y - y_1 = m(x - x_1)$

$$y - (-2) = 0 (x - 0)$$

$$y + 2 = 0$$

$$y = -2$$

Straight Lines Ex 23.2 Q4

The figure with the lines x = -3, x = 2, y = -2, y = 3 is as follows:

From the figure, the co-ordinates of the vertices of the square are (2,3),(-3,3),(-3,-2),(2,-2)

Straight Lines Ex 23.2 Q5

Slope of a line parallel to x-axis = 0

Since the line passes through (4,3),

The required equation of the line parallel to x-axes is

$$y - y_1 = m(x - x_1)$$

 $y - (3) = 0(x - 4)$

$$y - 3 = 0$$

$$y = 3$$

Slope of a line perpendicular to x-axis = $\frac{1}{6}$

The required equation of the line perpendicular to x-axis is $y - y_1 = m(x - x_1)$

$$y - 3 = \frac{-1}{0}(x - 4)$$

$$x - 4 = 0$$

$$x = 4$$

Straight Lines Ex 23.2 Q6

Let $x = \lambda$ be the line equidistant from

$$x = -2$$
 and $x = 6$

so
$$\left| \frac{-2-\lambda}{\sqrt{1}} \right| = \left| \frac{\lambda - 6}{\sqrt{1}} \right|$$

$$-2 - \lambda = \lambda - 6$$

$$4 = 2\lambda$$

 \therefore The line equidistant from x = -2 and x = 6 is x = 2

Straight Lines Ex 23.2 Q7

A line which is equidistant from two other lines, must have the same slope.

The slope of y = 10 and y = -2 is 0, ie line parallel to x-axis.

The required line is also parallel to y = 10 and y = -2

Also, the required line will pass from the mid-point of the line joining (0, -2) and (0,10)

Coordinates of this point will be $(0, \frac{10-2}{2}) = (0, \frac{8}{2}) = (0, 4)$

:. The equation of the require line is:

$$\Rightarrow y = 4$$