RD Sharma
Solutions
Class 11 Maths
Chapter 23
Ex 23.12

Straight lines Ex 23.12 Q1 Equation of line through (2,3) is

$$y-y_1 = m(x-x_1)$$

(2,3) is (x_1y_1)

Since the line is parallel to
$$3x - 4y + 5 = 0$$

 \Rightarrow The slope will be equal

---(1)

$$\Rightarrow \text{ The slope will be equal}$$

$$\text{Slope of } 3x - 4y + 5 = 0$$

$$4y = 3x + 5$$

$$4y = 3x + 5$$
$$y = \frac{3}{4}x + \frac{5}{4}$$

$$m = \frac{3}{4}$$
tuting m and (x_1y_1) is (1)

Substituting m and
$$(x_1y_1)$$
 is (1)
 $y - 3 = \frac{3}{4}(x - 2)$
 $4y - 12 = 3x - 6$
 $3x - 4y = -12 + 6 = -6$

 \Rightarrow

Straight lines Ex 23.12 Q2

3x - 4y + 6 = 0

Any equation passing through (3, -2) and perpendicular to givven line is $y-y_1 = -\frac{1}{m}(x - x_1)$

$$y-y_1 = -\frac{1}{m}(x-x_1)$$
Where (x_1-y_1) is $(3,-2)$ and m is slope of line

Where $(x_1 - y_1)$ is (3,-2) and m is slope of line.

 $\frac{-1}{m}$ is taken as lines are perpendicular

Finding slope of line
$$x - 3y + 5 = 0$$

Finding slope of line
$$x - 3y + 5 = 0$$

 $3y = x + 5$

$$3y = x + 5$$

$$y = \frac{x}{2} + \frac{5}{2}$$

Finding slope of line
$$x - 3y + 5 = 0$$

Substituting the value of m and $(x_1 - y_1)$ in (1)

$$y - (-2) = -\frac{1}{\frac{1}{3}}(x - 3)$$

 $y + 2 = -3(x - 3) = -3x + 9$
 $3x + y = 7$

Straight lines Ex 23.12 Q3

Any line which is perpendicular bisector means line is perpendicular to the given line and one end point is the mid-point of that line.

Has the mid-point

$$x = \frac{x_1 + x_2}{2}, \ y = \frac{y_1 + y_2}{2}$$

$$\Rightarrow (x_1 y_1) = \left(\frac{1+3}{2}, \ \frac{3+1}{2}\right) = (2,2)$$

Also slope of line is

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - 3}{3 - 1} = \frac{-2}{2} = -1$$

So, the slope of required line is 1 (negative reciprocal of slope)

Thus, the equation of perpendicular bisector is

$$y - y_1 = \frac{-1}{m} (x - x_1)$$

$$y - 2 = 1(x - 2)$$

$$y - 2 = x - 2$$

$$y = x$$

Let the perpendiculars of the triangle on the side AB, BC and AC be CF, AD and FB respectively.

Slope of the side AB =
$$\frac{4-2}{1+3} = \frac{2}{4} = \frac{1}{2}$$

Corresponding slope of CF = $-\frac{1}{4} = -2$

Corresponding slope of CF =
$$-\frac{1}{1/2}$$
 = -2

Equation of CF,
$$y-y_1 = m(x-x_1)$$

 $y+3 = -2(x+5)$ [Putting co-ordinat

$$y+3 = -2(x+1)$$
of C in place of x_1 and y_1

$$y+3 = -2x-1$$

of C in place of
$$x_1$$
 and y_1]
 $y+3 = -2x-1$
 $y = -2x-1$

Corresponding slope of AD = -

Slope of the side BC = -

Equation of AD, $y - y_1 = m(x - x_1)$

 $y-4 = -\frac{2}{5}(x-1)$

5y - 20 = -2x + 25y = -2x - 22

Equation of CF,
$$y-y_1 = m(x-x_1)$$

 $y+3 = -2(x+5)$ [Put of C in place of x_1 and y_1]

[since
$$m_1 \times m_2 = -1$$
]

ation of CF, $y-y_1 = m(x-x_1)$

$$y+3 = -2(x+5)$$

$$y+3 = -2x-10$$

$$y = -2x-13$$
[since $m_1 \times m_2 = -1$]
[Putting co-ordinates

[since]

| since |
| y+3 = -2(x+5) |
| sin place of
$$x_1$$
 and y_1 |
| y+3 = -2x-10 |
| y = -2x-13 |

Slope of the side AC =
$$\frac{4+3}{1+5} = \frac{7}{6}$$

Corresponding slope of FB =
$$-\frac{1}{7/6} = -\frac{6}{7}$$

Equation of FB,
 $y-y_1 = m(x-x_1)$

$$y-2 = \frac{-6}{7}(x+3)$$

$$7y-14 = -6x-18$$

$$7y = -6x-4$$

Equation of CF,
$$2x+y+13=0$$

Equation of FB, $6x+7y+4=0$

quation of line is
$$y_{i} = m'(x - x_{i})$$

ed equation of line is
$$y - y_1 = m'(x - x_1)$$

$$y_1 = m'(x_1y_1) = (0, \cdot)$$

$$y - y_1 = m'(x - x_1)$$

Point is $(x_1y_1) = (0, -4)$

Equation of AD, 2x+5y+22=0

 $v = \sqrt{3}x + 5$ $m = \sqrt{3}$

 $m' = \frac{-1}{m} = \frac{-1}{\sqrt{3}}$

Putting m' and (x_1y_1) in (1)

 $y + 4 = \frac{-x}{\sqrt{3}}$

 $y - (-4) = \frac{-1}{\sqrt{3}} (x - 0)$

 $x + \sqrt{3}y + 4\sqrt{3} = 0$

Point is
$$(x_1y_1) = (0, -4)$$

It is perpendicular to line $\sqrt{3}x - y + 5 = 0$

Slope is y = mx + c

$$= m'(x-x_1)$$
$$= (0,-4)$$

$$= m'(x - x_1)$$

$$= (0, -4)$$

ion of line is
$$m'(x-x_1)$$

Here,
Let I be line mirror and B is image of A
Let m be slope of line I
So,

$$m(\text{slope of }AB) = -1$$

$$m\left(\frac{2-1}{5-2}\right) = -1$$

$$m\left(\frac{1}{5}\right) = -1$$

$$m = -3$$

M is mid point of AB

$$M = \left(\frac{2+5}{2}, \frac{2+1}{2}\right)$$

$$M = \left(\frac{7}{2}, \frac{3}{2}\right)$$

Equation line l is, $y - y_1 = m(x - x_1)$

$$y - \frac{3}{2} = (-3)\left(x - \frac{7}{2}\right)$$

$$\frac{2y-3}{2} = -3x + \frac{21}{2}$$
$$2y-3 = -6x + 21$$

$$6x + 2y = 24$$

$$3x + y = 12$$

$$y-y_1 = m(x-x_1)$$

Where (x,y,) is (α,β)

 $y = \frac{-lx}{m} - \frac{n}{m}$

Slope of line = $\frac{-l}{m}$

Putting the data in (i), we get

 $y - \beta = \frac{m}{l}(x - \alpha)$ $IV + mx = m\alpha + I\beta$ $m(x-\alpha)=l(y-\beta)$

Straight lines Ex 23.12 Q8

(1,0)

Also, 2x-3y=53y = 2x - 5 $y = \frac{2x}{3} - \frac{5}{3}$

 $y - y_1 = m(x - x_1)$

---(1)

KS, Klick away

And m is negative reciprocal of slope of line lm + my + n = 0.

Let the equation of the required line be $y-y_1=m(x-x_1)$, where 'm' denotes the slope of the line and (x_1,y_1) be

Since the x-intercept of the line is 1 on the positive direction of the x-axis therefore the line passes through

the point through which the line passes.

Therefore, the slope of the given line is 2/3.

Therefore the equation of the required line is

Slope of the required line = $\frac{-1}{2/3} = -\frac{3}{2}$

Any line is given by equation

$$y-0=\frac{2}{3}(x-1)$$

$$y = -\frac{3}{2}(x-1)$$
$$2y = -3x+3$$

The equation of the required line is 3x+2y-3=0

Straight lines Ex 23.12 Q9

Slope of line through the points (a, 2a), (-2, 3)

$$\Rightarrow$$
 $m_1 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 2a}{-2 - a}$

$$x_2 - x_1 - 2 - a$$

Also, slope of line $x - ay = 1$ in the form $y = mx + c$
 $4x + 3y + 5 = 0$

Also, slope of line
$$x - \partial y = 1$$
 in

$$4x + 3y + 5 = 0$$

$$y = \frac{-4}{3}x - \frac{5}{3}$$

If two lines are perpendicular then,
$$m_1 m_2 = -1$$

-12 + 8a = 6 + 3a5a = 18

$$-12 + 8a = 6 + 5a = 18$$

 $a = \frac{18}{5}$