RD Sharma Solutions Class 11 Maths Chapter 19 Ex 19.1

Arithematic Progressions Ex 19.1 Q1

$$a_n = n^2 - n + 1$$
 ---(i) is the given sequence

Then, first 5 terms are a_1 , a_2 , a_3 , a_4 and a_5

$$a_1 = (1)^2 - 1 + 1 = 1$$
 $a_2 = (2)^2 - 2 + 1 = 3$
 $a_3 = (3)^2 - 3 + 1 = 7$

$$a_3 = (3)^2 - 3 + 1 = 7$$

 $a_4 = (4)^2 - 4 + 1 = 13$

$$a_5 = (5)^2 - 5 + 1 = 21$$

First 5 terms 1, 3, 7, 13 and 21.

Arithematic Progressions Ex 19.1 Q2

$$a_n = n^3 - 6n^2 + 11n - 6$$
 $n \in \mathbb{N}$.

The first three terms are a_1, a_2 and a_3 $a_1 = (1)^3 - 6(1)^2 + 11(1) - 6 = 0$

$$a_1 = (1)^3 - 6(1)^2 + 11(1) - 6 = 0$$

 $a_2 = (2)^3 - 6(2)^2 + 11(2) - 6 = 0$

$$a_3 = (3)^3 - 6(3)^2 + 11(3) - 6 = 0$$

and

st three terms are
$$a_1$$
, a_2 and a_3

$$a_1 = (1)^3 - 6(1)^2 + 11(1) - 6 = 0$$

$$a_2 = (2)^3 - 6(2)^2 + 11(2) - 6 = 0$$

$$a_3 = (3)^3 - 6(3)^2 + 11(3) - 6 = 0$$
1st 3 terms are zero.
$$a_n = n^3 - 6n^2 + 11n - 6$$

$$= (n-2)^3 - (n-2) \text{ is positive as } n \ge 4$$
s always positive.

matic Progressions Ex 19.1 Q3
$$a_{n-1} + 2 \text{ for } n > 1$$

∴ a, is always positive.

Arithematic Progressions Ex 19.1 Q3

 $a_n = 3a_{n-1} + 2$ for n > 1

$$a_n = 3a_{n-1} + 2$$
 for $n > 1$

$$a_2 = 3a_{2-1} + 2 = 3a_1 + 2$$

$$= 3(3) + 2 = 11$$

 $a_3 = 3a_{2-1} + 2 = 3a_2 + 2$

$$= 3a_{3-1} + 2 = 3a_2 + 2$$
$$= (11) + 2 = 35$$

$$a_4 = 3a_{4-1} + 2 = 3a_2 + 2$$

= 3(35) + 2 = 107

 $\begin{bmatrix} \therefore a_1 = 3 \end{bmatrix}$

 $\left[:: a_2 = 11 \right]$

 $[\because a_3 = 35]$

.. The given sequence is 1,1,3,5.

(iii)
$$a_1 = a_2 = 2$$
 $a_n = a_{n-1} - 1$ $n > 2$

$$\Rightarrow a_3 = a_{3-1} - 1$$

$$= a_2 - 1$$

$$= 2 - 1 = 1$$

$$\Rightarrow a_4 = a_{4-1} - 1$$

$$= a_3 - 1 = 1 - 1 = 0$$

$$\Rightarrow a_5 = a_{5-1} - 1$$

$$= 0 - 1 = -1$$

.. The first 5 terms of the sequence Arithematic Progressions Ex 19.1 Q5

(i)

(ii)

 \Rightarrow

 \Rightarrow

 \Rightarrow

 $a_1 = 1$, $a_n = a_{n-1} + 2$, $n \ge 2$

 $a_2 = a_{2-1} + 2 = a_{1+2} = 3$

 $a_3 = a_{3-1} + 2 = a_2 + 2 = 5$ $a_4 = a_{4-1} + 2 = a_3 + 2 = 7$

 $a_5 = a_{5-1} + 2 = a_4 + 2 = 9$

 $a_1 = a_2 = 1$

 $a_n = a_{n-1} + a_{n-2}$ $a_3 = a_{3-1} + a_{3-2}$

 $a_4 = a_{4-1} + a_{4-2}$

 $a_5 = a_{5-1} + a_{5-2}$

 $= a_4 + a_3 = 5$

.. The first 5 terms of series are 1, 3, 5, 7, 11.

n > 2 $= a_2 + a_1 = 1 + 1 = 2$ $= a_3 + a_2 = 2 + 1 = 3$

 $[\because a_1 = 1]$

 $\left[\because a_2 = 3\right]$

 $[\because a_3 = 5]$ $[\because a_4 = 7]$

$$a_n = a_{n-1} + a_{n-2}$$
 for $n > 2$

$$\Rightarrow$$
 $a_3 = a_{3-1} + a_{3-2} = a_2 + a_1 = 1 + 1 = 2$

$$\Rightarrow$$
 $a_4 = a_{4-1} + a_{4-2} = a_3 + a_2 = 2 + 1 = 3$

$$\Rightarrow$$
 $a_5 = a_{5-1} + a_{5-2} = a_4 + a_3 = 3 + 2 = 5$

$$\Rightarrow$$
 $a_6 = a_{6-1} + a_{6-2} = a_5 + a_4 = 5 + 31 = 8$

$$\therefore \quad \text{For } n = 1$$

$$\frac{\partial_{n+1}}{\partial_n} = \frac{\partial_2}{\partial_1} = \frac{1}{1} = 1$$

For
$$n = 2$$

$$\frac{a^3}{a_2} = \frac{2}{1} = 2$$

For
$$n = 3$$

$$\frac{a_4}{a_3} = \frac{3}{2} = 1.5$$

and
$$n$$

$$\frac{a_5}{a_4} = \frac{5}{3}$$

$$\frac{a_5}{a_4} = \frac{5}{3}$$
 and $\frac{a_6}{a_6} = \frac{8}{5}$

$$\therefore$$
 The required series is $1, 2, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \dots$

Arithematic Progressions Ex 19.1 Q6(i)

$$a_1 = 3$$
, $a_2 = -1$, $a_3 = -5$, $a_4 = -9$

$$a_2 - a_1 = -1 - 3 = -4$$

$$a_3 - a_2 = -5 - (-1) = -4$$

$$a_4 - a_3 = -9(-5) = -4$$

\therefore Common difirence is d = -4

$$a_4 - a_3 = a_3 - a_2 = a_3$$

The given sequence is a A.P.

$$a_5 = 3 + (5 - 1)(-4) = -13$$

$$a_6 = 3 + (6 - 1)(-4) = -17$$

$$a_7 = 3 + (7 - 1)(-4) = -21$$

Arithematic Progressions Ex 19.1 Q6(ii)

$$-1, \frac{1}{4}, \frac{3}{2}, \frac{11}{4}...$$

$$a_1 = -1, \ a_2 = \frac{1}{4}, \ a_3 = \frac{3}{2}, \ a_4 = \frac{11}{4}$$

$$a_4 - a_3 = a_3 - a_2 = a_2 - a_1 = \frac{5}{4}$$

$$\therefore \quad \text{Common difference is } d = \frac{5}{4}$$

$$a_5 = -1 + (5 - 1)\frac{5}{4} = 4$$

$$a_6 = -1 + (6 - 1)\frac{5}{4} = \frac{21}{4}$$

$$a_7 = -1 + (7 - 1)\frac{5}{4} = \frac{26}{4} = \frac{13}{2}$$

Arithematic Progressions Ex 19.1 Q6(iii)

$$a_1 = \sqrt{2}$$
, $a_2 = 3\sqrt{2}$, $a_3 = 5\sqrt{2}$, $a_4 = 7\sqrt{2}$
 $a_4 - a_3 = a_3 - a_2 = a_2 - a_1 = 2\sqrt{2}$

 \therefore The common difference is $2\sqrt{2}$

and the given sequence is A.P.

$$a_5 = \sqrt{2} + 2\sqrt{2}(5 - 1) = 9\sqrt{2}$$

$$a_6 = \sqrt{2} + 2\sqrt{2}(6 - 1) = 11\sqrt{2}$$

$$a_7 = \sqrt{2} + 2\sqrt{2}(7 - 1) = 13\sqrt{2}$$

Arithematic Progressions Ex 19.1 Q6(iv)

$$a_4 - a_3 = a_3 - a_2 = a_2 - a_1 = -2$$

:. The common difference is - 2

and the given sequence is A.P

$$a_5 = 9 + (-2)(5 - 1) = 1$$

$$a_6 = 9 + (-2)(6 - 1) = -1$$

$$a_7 = 9 + (-2)(7 - 1) = -3$$

Arithematic Progressions Ex 19.1 Q7

$$a_n = 2n + 7$$

$$a_1 = 2(1) + 7 = 9$$

$$a_2 = 2(2) + 7 = 11$$

$$a_3 = 2(3) + 7 = 13$$

Here,
$$a_3 - a_2 = a_2 - a_1 = 2$$

$$a_7 = 2(7) + 7 = 21$$

7th term is 21.

Arithematic Progressions Ex 19.1 Q8

$$a_n = 2n^2 + n + 1$$

$$a_1 = 2(1)^2 + (1) + 1 = 4$$

$$a_2 = 2(2)^2 + (2) + 1 = 11$$

$$a_3 = 2(3)^2 + (3) + 1 = 21$$

$$a_3 - a_2 \neq a_2 - a_1$$

 \odot The given sequence is not as A.P as consequtive terms do not have a common difference.

RD Sharma
Solutions
Class 11 Maths
Chapter 19
Ex 19.2

Arithematic Progressions Ex 19.2 Q1

- (i) 10th term of A.P 1, 4, 7, 10, ...
- Here, 1st term = $a_1 = 1$

and common difference d = 4 - 1 = 3

- We know $a_n = a_1 + (n-1)d$
- $a_{10} = a_1 + (10 1)d$
- $= 1 + (10 1)3 \Rightarrow 28$
- (ii) To find 18th term of A.P √2,3√2,5√2,...
- $d = \text{common difference} = 2\sqrt{2}$ and
- $\therefore \quad a_n = a_1 + (n-1)d$

Here, 1st term $a_1 = \sqrt{2}$

- $a_{18} = \sqrt{2} + 2\sqrt{2} (17) = 35\sqrt{2}$
- (n-1)(-5) = -5n + 18Arithematic Progressions Ex 19.2 Q2

 It is given that the sequence $\langle a_n \rangle$ is an A.P $A_n = a + (n-1)a$ $A_n = a + (m+n-1)a$ $A_n = a + (m+n-1)a$ $A_n = a + (m-n-1)a$ $A_n = a + (m-n-1)a$

- Adding (ii) and (iii)
- $a_{m+n} + a_{m-n} = (a + (m+n-1)d) + (a + (m-n-1)d)$ = 2a + (m+n-1+m-n-1)d
 - = 2a + 2d(m-1)= 2(a + (m-1)d)
- = 2a_m Hence proved. **Arithematic Progressions Ex 19.2 Q3**

(i) Let nth term of A.P = 248

$$\therefore$$
 $a_n = 248 = a + (n-1)d$

$$\Rightarrow$$
 248 = 3 + $(n-1)$ 5

$$\therefore$$
 $n = 50$

- : 50th term of the given A.P is 248.
- (ii) Which term of A.P 84,80,76 is 0?

Let nth term of A.P be 0

Then,
$$a_n = 0 = a + (n-1)d$$

$$0 = 84 + (n - 1)(-4)$$

$$\therefore$$
 $n = 22$

- ∴ 22nd term of the given A.P is 0.
- (iii) Which term of A.P is 4, 9, 14, ... is 254?

Let nth term of A.P be 254

$$a_n = a + (n-1)d$$

$$254 = 4 + (n - 1)5$$

$$n = 51$$

 $^{\circ}$ 51st term of the given A.P is 254.

Arithematic Progressions Ex 19.2 Q4

(i) Is 68 a term of A.P 7, 10, 13, ...?

Here,
$$a = 7$$

and
$$x = 10 - 7 = 3$$

$$\therefore a_n \text{ term is} = a + (n-1)d$$
$$= 7 + (n-1)3$$

Let 68 be nth temr of A.P.

Then,

$$68 = 7 + 3(n - 1)$$

$$\Rightarrow 68 = 7 + 3n - 3$$

$$\Rightarrow$$
 68 - 4 = 3n

$$\Rightarrow$$
 64 = 3n

$$\Rightarrow n = \frac{64}{3}$$

Which is not a natural number.

- ∴ 68 is nota term of given A.P.
- (ii) Is 302 a term of A.P 3,8,13

Let 302 be nth ter, pf tje given A.P

Here,
$$302 = 3 + (n - 1)5$$

$$\frac{299}{5} = (n-1)$$

$$n = \frac{304}{5}$$

Which is not a natural number.

∴ 302 is not a term of given A.P.

Arithematic Progressions Ex 19.2 Q5

(i) The given sequence is
$$24,23\frac{1}{4},22\frac{1}{2},21\frac{3}{4},...$$

Here,
$$a = 24$$

$$d = 23\frac{1}{4} - 24 = \frac{93 - 96}{4} = \frac{-3}{4}$$
term he the 1st negative term.

Let
$$n$$
th term be the 1st negative term.
 $a_n < 0$

$$a + (n-1)d < 0$$

$$24 - \frac{3}{2}(n-1) <$$

$$24 - \frac{3}{4}(n-1) < 0$$

$$96 - 3n + 3 < 0$$

$$a = 12 + 8i$$

$$a = 12 + 8i$$

 $d = -1 - 2i$

$$d = -1 - 2i$$

$$a_n = a + (n-1)d$$

$$a_n = a + (n-1)\alpha$$

= 12 + 8*i* + (n - 1)(-1 - 2*i*

96 -
$$3n + 3 < 0$$

99 < $3n$
33 < n or $n > 33$
 \therefore 34th term is 1st negative term.
(ii) The given sequence is $12 + 8i$, $11 + 6i$, $10 + 4i$,...
Here, $a = 12 + 8i$
 $d = -1 - 2i$
Then, $a_n = a + (n - 1)d$
 $= 12 + 8i + (n - 1)(-1 - 2i)$
 $= (13 - n) + i(10 - 2n)$
Let n th term be purely real.

Let *n*th term be purely imaginary. Then,
$$13 - n = 0$$

 $\therefore n = 13$

The given A.P is 7, 10, 13, ... 43.

Let there be n terms,

then, n term = 43

or
$$43 = a_n = a + (n-1)d$$

$$\Rightarrow 43 = 7 + (n-1)3$$

$$\Rightarrow$$
 $n = 13$

Thus, there are 13 terms in the given sequence.

(ii) The given A.P is
$$-1, \frac{-5}{6}, \frac{-2}{3}, \frac{-1}{2}, \dots, \frac{10}{3}$$
?

Let there be n terms

then, *n*th term = $\frac{10}{3}$

or
$$\frac{10}{3} = a_n = a + (n-1)d$$

$$\Rightarrow \frac{10}{3} = -1 + (n-1)\left(\frac{-5}{6} + 1\right)$$

$$\Rightarrow$$
 $n = 27$

Thus, there are 27 terms in the given sequence.

Arithematic Progressions Ex 19.2 Q7

Given:
$$a = 5$$

$$d = 3$$

$$a_n = \text{last term} = 80$$

Let there be n terms

$$a_n = 80 = a + (n-1)d$$

$$80 = 5 + (n - 1)3$$

$$\Rightarrow$$
 $n = 26$

: Thus, thre are 26 terms in the given sequence.

Arithematic Progressions Ex 19.2 Q8

Given that:

$$a_6 = 19 = a + (6 - 1)d$$
 --- (i

$$a_{17} = 41 = a + (17 - 1)d$$
 --- (ii)

Solving (i) and (ii), we get

$$a = 9$$
 and $d = 2$

$$a_{40} = a + (40 - 1)d$$

$$= 9 + (40 - 1)2$$

40th term of the given sequence is 87.

Given:

$$a_{19} = a + (19 - 1)d$$

= $a + 18d$
= $-8d + 18d$
= $10d$

$$[\because a = -8d \text{ from (i)}]$$
---(ii)

---(i)

$$a_{29} = a + (29 - 1)d$$

= $-8d + 28d$
= $20d$

$$[\because a = -8d \text{ from (i)}]$$
---(iii)

From (ii) and (iii)
$$a_{29} = 2a_{19} \qquad \text{Hence proved.}$$

Arithematic Progressions Ex 19.2 Q10

Given:

Given:
$$10a_{10} = 15a_{15}$$

$$\Rightarrow 10(a + (10 - 1)d) = 15(a + (15 - 1)d)$$

$$\Rightarrow 10a + 90d = 15a + 210d$$

$$\Rightarrow 5a + 120d = 0$$

$$\Rightarrow a + 24d = 0$$

$$\Rightarrow a + 24d$$

$$= 0$$

$$\begin{cases} \because \text{ from } (i) a + 24d = 0 \end{cases}$$
Hence proved.

Arithematic Progressions Ex 19.2 Q11
Given:
$$a_{10} = 41 = a + 9d$$

$$a_{18} = 73 = a + 17d$$

$$\Rightarrow ---(i)$$

$$\Rightarrow ---(ii)$$
Solving (i) and (ii)
$$\Rightarrow + 9d = 41$$

$$\Rightarrow$$
 10a + 90d = 15a + 210d

$$\Rightarrow 5a + 120d = 0$$

$$\Rightarrow 24d = 0$$

$$a_{25} = a + (25 - 1)d$$

= $a + 24d$
= 0

$$\left[\because \text{ from } (i) a + 24d = 0\right]$$

$$a_{10} = 41 = a + 9d$$

 $a_{10} = 73 = a + 17d$

a + 9d = 41

a + 17d = 73

$$a_{26} = a + (26 - 1)d$$

$$= 5 + 25(4)$$

$$= 105$$

26th term of the given A.P is 105.

Given:

$$a_{24} = 2a_{10}$$

 $\Rightarrow a + 23d = 2(a + 9d)$

$$\Rightarrow$$
 $a = 5d$

$$a_{72} = a + (72 - 1)d$$

$$= a + 71d$$

$$\Rightarrow = 76d$$

$$a_{34} = a + (34 - 1)d$$

$$= 5d + 33d$$

 $[\because a = 5d \text{ from (i)}]$

 $[\because a = 5d \text{ from (i)}]$

= 38d

Hence proved.

Arithematic Progressions Ex 19.2 Q13

Given:

$$a_{m+1} = 2a_{n+1}$$

 $\Rightarrow a + (m+1-1)d = 2(a+(n+1-1)d)$

$$\Rightarrow$$
 $a+md=2a+2nd$

$$\Rightarrow a = (m - 2n)d$$

Then,

$$a_{3m+1} = a + (3m + 1 - 1)d$$

$$= a + 3md$$

$$= 3d - 2nd + 3md$$

$$= 2(2m - n)d$$

$$a_{m+n+1} = a + (m+n+1-1)d$$

= $md - 2nd + md + nd$
= $(2m-n)d$

From (ii) and (iii)

$$a_{2m+1} = 2a_{m+n+1}$$

Hence proved.

Arithematic Progressions Ex 19.2 Q14

The given A.P is 9, 7, 5, ... and 15, 12, 9 Here,

$$A = 15$$

$$d = -2$$

$$D = 3$$

Let $a_n = A_n$ for same n.

$$\Rightarrow a + (n-1)d = A + (n-1)d$$

$$\Rightarrow$$
 9 + $(n-1)(-2) = 15 + (n-1)3$

$$\Rightarrow$$
 $n = 7$

.. 7th term of both the A.P is same.

(i) A.P is
$$3,5,7,9,...,201$$
.

Here, $a=3$
 $d=2$
 n th term from the end is $l-(n-1)d$
i.e. $201-(n-1)2$ or $203-2n$
 12 th term from end is
 $203-2(12)=179$

(ii) A.P is $3,8,13,...,253$.

Then, 12 th term from end is $l-(n-1)d$ i.e.,
$$= 253-(12-1)5$$

$$= 253-55$$

$$= 198$$

(iii) A.P is $1,4,7,10,...,88$

Then, 12 th term from end is $l-(n-1)d$

$$= 88-(12-1)3$$

$$= 88-33$$

$$= 55$$

Arithematic Progressions Ex 19.2 Q16

Given,
$$a=3a_1$$

$$a_7=2a_3+1$$

Expanding (i) and (ii)
$$a+3d=2a$$

$$\therefore 2a=3d \text{ or } a=\frac{3d}{2} \qquad ---(iii)$$

---(iv)

∴ 1st term of the given A.P is 3, and common difference is 2.

Arithematic Progressions Ex 19.2 Q17

a + 6d = 2a + 4d + 1

a = 3 and d = 2

a + 1 = 2d

From (iii) and (iv)

$$a_6 = a + 5d = 12$$

 $a_8 = a + 7d = 22$

---(i) --- (ii)

Solving (i) and (ii)

$$a = -13$$
 and $d = 5$

Then,

$$a_n = a + (n - 1)d$$

= -13 + (n - 1)5
= 5n - 18

and

$$a_2 = a + (2 - 1) d$$

= -13 + 5
= -8

Arithematic Progressions Ex 19.2 Q18

4 by 3.

J.2 Q19 The first two digit number divisible by 3 is 12. and last two digit number divisible by 3 is 99.

So, the required series is 12, 15, 18, ... 99.

Let there be n terms then nth term = 99

$$\Rightarrow$$
 99 = $a + (n-1)d$

$$\Rightarrow$$
 99 = 12 + $(n-1)$ 3

$$\Rightarrow$$
 $n = 30$

30 two digit numbers are divisible by 3.

Arithematic Progressions Ex 19.2 Q19

Given,

$$n = 60$$

$$a = 7$$

$$I = 125$$

$$a + (n-1)d = 125$$

$$7 + (59)d = 125$$

$$d = 2$$

= 69

32nd term is 69.

$$a_4 + a_8 = 24 \qquad \qquad [Given]$$

$$\Rightarrow (a + 3d) + (a + 7d) = 24$$

$$\Rightarrow a + 5d = 12 \qquad ---(i)$$

$$a_6 + a_{10} = 34$$

$$\Rightarrow (a + 5d) + (a + 9d) = 34$$

$$\Rightarrow a + 7d = 17 \qquad ---(ii)$$
From (i) and (ii)
$$a = \frac{-1}{2} \text{ and } d = \frac{5}{2}$$

$$\therefore 1\text{st term is } \frac{-1}{2} \text{ and common difference is } \frac{5}{2}$$
Arithematic Progressions Ex 19.2 Q21
The nth term from starting
$$= a_n = aa + (n - 1)a \qquad ---(i)$$
The nth term from end
$$= l - (n - 1)d \qquad ---(ii)$$
Adding (i) and (ii), we get
Sum of nth term from begining and nth term from the end
$$= a + (n - 1)d + l - (n - 1)d$$

$$= a + l \text{ Hence proved.}$$

$$\frac{4}{3} = \frac{2}{3}$$

$$\frac{a+3d}{a+3} = 2$$

$$\Rightarrow \frac{a+3d}{a+6d} = \frac{2}{3}$$

$$\Rightarrow 3a+9d = 2a+12d$$

--- (i)

[∵ 3d from (i)]

[Given]

$$\frac{a_6}{a_8} = \frac{a+5d}{a+7d}$$

$$\Rightarrow = \frac{3d+5d}{3d+7d}$$

$$\Rightarrow = \frac{8d}{10d}$$

$$\Rightarrow = \frac{4}{5}$$

$$\frac{a_6}{a_0} = \frac{4}{5}$$

$$\theta_2 - \theta_1 = \theta_3 - \theta_2 = \dots = d$$

Arithematic Progressions Ex 19.2 Q23
$$\sec \theta_{1} \sec \theta_{2} + \sec \theta_{2} \sec \theta_{3} + \dots + \sec \theta_{n-1} \sec \theta_{n} = \frac{\tan \theta_{n} - \tan \theta_{1}}{\sin d}$$

$$\theta_{2} - \theta_{1} = \theta_{3} - \theta_{2} = \dots = d$$

$$\sec \theta_{1} \sec \theta_{2} = \frac{1}{\cos \theta_{1} \cos \theta_{2}} = \frac{\sin d}{\sin d (\cos \theta_{1} \cos \theta_{2})}$$

$$= \frac{\sin (\theta_{2} - \theta_{1})}{\sin d (\cos \theta_{1} \cos \theta_{2})}$$

$$= \frac{\sin \theta_{2} \cos \theta_{1} - \cos \theta_{2} \sin \theta_{1}}{\sin d (\cos \theta_{1} \cos \theta_{2})}$$

$$= \frac{1}{\sin d} \left[\frac{\sin \theta_{2} \cos \theta_{1}}{(\cos \theta_{1} \cos \theta_{2})} - \frac{\cos \theta_{2} \sin \theta_{1}}{(\cos \theta_{1} \cos \theta_{2})} \right]$$

$$= \frac{\sin(\theta_2 - \theta_1)}{\sin d(\cos \theta_1 \cos \theta_2)}$$

$$= \frac{\sin \theta_2 \cos \theta_1 - \cos \theta_2 \sin \theta_1}{\sin \theta_1 (\cos \theta_1 \cos \theta_2)}$$

$$=\frac{1}{\sin d}\left[\frac{\sin\theta_2\cos\theta_1}{(\cos\theta_1\cos\theta_2)}-\frac{\cos\theta_2\sin\theta_1}{(\cos\theta_1\cos\theta_2)}\right]$$

$$= \frac{1}{\sin d} [Tan\theta_2 - Tan\theta_1]$$

Similarly,
$$\sec \theta_2 \sec \theta_3 = \frac{1}{\sin d} \left[Tan\theta_3 - Tan\theta_2 \right]$$

If we add up all terms, we get

$$=\frac{1}{\sin d} \left[Tan\theta_2 - Tan\theta_1 + Tan\theta_3 - Tan\theta_2 + \dots + Tan\theta_n - Tan\theta_{n-1} \right]$$

$$= \frac{1}{\sin d} \left[Tan\theta_n - Tan\theta_1 \right]$$

Hence Proved

RD Sharma
Solutions
Class 11 Maths
Chapter 19
Ex 19.3

Arithematic Progressions Ex 19.3 Q1

Let the 3rd term of A.P be

$$a-d$$
, a , $a+d$

Then,

$$a - d + a + a + d = 21$$

$$3a = 21$$

and

$$(a-d)(a+d)=a+6$$

$$a^2 - d^2 = a + 6$$

$$7^2 - d^2 = 7 + 6$$

$$d^2 = 36$$

$$d = \pm 6$$

Since d can't be negative, therefore

:. The A.P is 1, 7, 13.

Arithematic Progressions Ex 19.3 Q2

Let the 3 numbers in A.P are

$$a-d$$
, a , $a+d$

Then,

$$a - d + a + a + d = 27$$

$$3a = 27$$

and

$$(a-d)(a)(a+d) = 648$$

$$(9-d)9(9-d)=648$$

$$9^2 - d^2 = 72$$

d = 3:.

[: a = 9] ---(ii) .. The given sequence is 6, 9, 12.

Arithematic Progressions Ex 19.3 Q3

Let the four numbers in A.P be

$$a - 3d$$
, $a - d$, $a + d$, $a + 3d$
 $(a - 3d) + (a - d) + (a + d) + (a + 3d) = 50$
 $4a = 50$

$$a = \frac{25}{2}$$
 --- (i)

and

$$(a+3d)=4(a-3d)$$

$$\frac{25 + 6d}{2} = 50 - 12d$$

$$30d = 75$$

$$d = \frac{25}{10} = \frac{5}{2}$$

--- (ii)

 $[\because a = 7]$

∴ The required sequence is 5,10,15,20.

Let three numbers be a-d, a, a+dThen, a-d+a+a+d=12 3a=12 a=4and $(a-d)^3+a^3+(a+d)^3=\pm 288$ $a^3+d^3+3ad(a+d)+a^3+a^3-a^3-3ad(a-d)-288$ $\Rightarrow 2a^3+3a^2d+3ad^2-3a^2d+3ad^2=288$ $\Rightarrow 2a^3+3a^2d^2=288$ $\Rightarrow 128+48d^2=288$ $\therefore d=\pm 2$

.. The required sequence is 2, 4, 6 or 6, 4, 2.

Arithematic Progressions Ex 19.3 Q5

Let 3 numbers in A.P be

$$a - d$$
, a and $a + d$
 $(a - d) + (a) + (a + d) = 24$
 $3a = 24$

a = 8

and

$$(a-d)(a)(a+d) = 440$$

 $8^2 - d^2 = 55$
 $d = 3$

.. The required sequence is 5, 8, 11.

Arithematic Progressions Ex 19.3 Q6

Let the four angle be

$$a - 3d, a - d, a + d, a + 3d$$

Then,

sum of all angles = 360° $a - 3d + a - d + a + d + a + 3d = 360^{\circ}$

and

$$(a-d)-(a-3d)=10$$

 $2d=10$

:. The angle of the given quadrilateral are 75°, 85°, 95° and 105°.

RD Sharma Solutions Class 11 Maths Chapter 19 EX.19.4

Arithematic Progressions Ex 19.4 Q1

(i) 50, 46, 42, ..., 10 terms

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{10} = \frac{10}{2} [2 \times 50 + (10-1)(-4)]$$

$$= 320$$

(ii) 13,5,...,12 terms

$$S_{12} = \frac{12}{2} [2 \times 1 + (12 - 1)2]$$
$$= 6 \times 24 = 144$$

(iii)
$$3, \frac{9}{2}, 6, \frac{15}{2}, ..., 25 \text{ terms}$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{25} = \frac{25}{2} (2 \times 3 + 24 \times \frac{3}{2})$$

$$= 525$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{25} = \frac{25}{2} [2 \times 41 + (11)(-5)]$$

$$= 162$$

(v)
$$a + b, a - b, a - 3b, ...$$
 to 22 terms

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{22} = \frac{22}{2} [2a + 2b + 21(-2b)]$$

$$= 22a - 440b$$

$$= 525$$
(iv) $41,36,31,...,12$ terms
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{25} = \frac{25}{2} [2 \times 41 + (11)(-5)]$$

$$= 162$$
(v) $a + b, a - b, a - 3b, ...$ to 22 terms
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_{22} = \frac{22}{2} [2a + 2b + 21(-2b)]$$

$$= 22a - 440b$$
(vi) $(x - y)^2$, $(x^2 + y^2)$, $(x + y)^2$,..., x terms

$$S_{n} = \frac{n}{2} [2a + (n-1)d]$$

$$= \frac{n}{2} [2(x^{2} + y^{2} - 2xy) + (x-1)(-2xy)]$$

$$= n[(x-y)^{2} + (n-1)xy]$$

$$3x - 2x - 5x - 3y$$

$$\frac{x-y}{x+y}$$
, $\frac{3x-2y}{x+y}$, $\frac{5x-3y}{x+y}$,....to n terms

nth term in above sequence is $\frac{(2n-1)x-ny}{x+y}$

Sum of n terms is given by

$$\frac{1}{x+y} \Big[x + 3x + 5x + \dots + (2n-1)x - (y + 2y + 3y \dots + ny) \Big]$$

$$= \frac{1}{x+y} \left[\frac{n}{2} (2x + (n-1)2x) - \frac{n(n+1)y}{2} \right]$$

Arithematic Progressions Ex 19.4 Q2

a, term of given A.P is 182

$$a_n = a + (n-1)d = 182$$

$$\Rightarrow$$
 182 = 2 + $(n-1)$ 3

or
$$n = 61$$

Then,

$$S_n = \frac{n}{2} [a+l]$$

$$= \frac{61}{2} [2+182]$$

$$= 61 \times 92$$

$$= 5612$$

 a_n term of A.P of n terms is 47.

$$47 = a + (n-1)d$$

$$47 = 101 + (n-1)(-2)$$

or
$$n = 28$$

Then,

$$S_n = \frac{n}{2} [a + l]$$

$$= \frac{28}{2} [101 + 47]$$

$$= 14 \times 148$$

$$= 2072$$

(iii)
$$(a-b)^2 + (a^2+b^2) + (a+b)^2 + ... + [(a+b)^2 + 6ab]$$

Let number of terms be n

Then,

$$a_n = (a+b)^2 + 6ab$$

$$\Rightarrow$$
 $(a-b)^2 + (n-1)(2ab) = (a+b)^2 + 6ab$

$$\Rightarrow$$
 $a^2 + b^2 - 2ab + 2abn - 2ab = a^2 + b^2 + 2ab + 6ab$

$$\Rightarrow n = 6$$

Then,

$$S_n = \frac{n}{2} [a + l]$$

$$S_6 = \frac{6}{2} [a^2 + b^2 - 2ab + a^2 + b^2 + 2ab + 6ab]$$

$$= 6 [a^2 + b^2 + 3ab]$$

A.P formed is 1, 2, 3, 4, ..., n.

Here,

$$a = 1$$

$$l = n$$

So sum of
$$n$$
 terms = $S_n = \frac{n}{2} [2a + (n-1)d]$
= $\frac{n}{2} [2 + (n-1)1]$
= $\frac{n(n+1)}{2}$ is the sum of first n natural numbers.

Arithematic Progressions Ex 19.4 Q4

The natural numbers which are divisible by 2 or 5 are:

$$2+4+5+6+8+10+\cdots+100 = (2+4+6+\cdots+100)+(5+15+25+\cdots+95)$$
 Now $(2+4+6+\cdots+100)$ and $(5+15+25+\cdots+95)$ are AP with common difference 2 and 10 respectively.

Therefore

$$2+4+6+\cdots+100 = 2\frac{50}{2}(1+50)$$
$$= 2550$$

Again

$$5+15+25+\dots+95=5(1+3+5+\dots+19)$$

$$=5\left(\frac{10}{2}\right)(1+19)$$

$$=500$$

Therefore the sum of the numbers divisible by 2 or 5 is:

$$2+4+5+6+8+10+\cdots+100=2550+500$$

$$= 3050$$

Arithematic Progressions Ex 19.4 Q5

The series of n odd natural numbers are 1, 3, 5, ..., n

Where n is odd natural number

Then, sum of n terms is

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
$$= \frac{n}{2} [2(1) + (n-1)(2)]$$
$$= n^2$$

The sum of n odd natural numbers is n^2 .

The series so formed is 101,103,105,...,199

Let number of terms be n

Then,

$$a_n = a + (n-1)d = 199$$

$$\Rightarrow$$
 199 = 101 + $(n-1)$ 2

$$\Rightarrow$$
 $n = 50$

The sum of
$$n$$
 terms = $S_n = \frac{n}{2}[a+l]$

$$S_{50} = \frac{50}{2}[101+199]$$

$$= 7500$$

The sum of odd numbers between 100 and 200 is 7500.

Arithematic Progressions Ex 19.4 Q7

Hence proved.

19.4 Q8

75,...,715 The odd numbers between 1 and 100 divisible by 3 are 3, 9, 15, ..., 999

Let the number of terms be n then, nth term is 999.

$$a_n = a(n-1)d$$

$$999 = 3 + (n - 1)6$$

$$\Rightarrow$$
 $n = 167$

The sum of n terms

$$S_n = \frac{n}{2} [a+l]$$

$$\Rightarrow S_{167} = \frac{167}{2} [3 + 999]$$
= 83667 Hence or

Arithematic Progressions Ex 19.4 Q8

The required series is 85, 90, 95, ..., 715

Let there be n terms in the A.P.

Then,

$$n$$
th term = 715

$$715 = 85 + (n - 1)5$$

$$n = 127$$

Then,

$$S_n = \frac{n}{2} [a+l]$$

$$S_{127} = \frac{127}{2} [85 + 715]$$
$$= 50800$$

The series of integers divisble by 7 between 50 and 500 are

Let the number of terms be n then, nth term = 497

$$a_n = a + (n-1)d$$

$$\Rightarrow$$
 497 = 56 + (n - 1)7

$$\Rightarrow$$
 $n = 64$

The sum
$$S_n = \frac{n}{2}[a+l]$$

$$\Rightarrow S_{64} = \frac{64}{2} [56 + 497]$$
$$= 32 \times 553$$
$$= 17696$$

Arithematic Progressions Ex 19.4 Q10

All even integers will have common difference = 2

$$t_n = a + (n-1)d$$

$$t_p = 998, a = 102, d = 2$$

$$998 = 102 + (n-1)(2)$$

$$998 = 102 + 2n - 2$$

$$998 - 100 = 2n$$

$$2n = 898$$

$$n = 449$$

S449 can be calculated by

$$S_n = \frac{n}{2} [a+l]$$

$$= \frac{449}{2} [102+998]$$

$$= \frac{449}{2} \times 1100$$

$$= 449 \times 550$$

Arithematic Progressions Ex 19.4 Q11

= 246950

The series formed by all the integers between 100 and 550 which are divisible by 9 is 108,117,123,...,549

Let there be n terms in the A.P then, the nth term is 549

$$549 = a + (n - 1)d$$

$$549 = 108 + (n - 1)9$$

$$\Rightarrow$$
 $n = 50$

Then,

In the given series 3+5+7+9+... to 3n

Here,

$$a = 3$$

$$d = 2$$

Number of terms = 3n

The sum of n term is

$$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$$

$$\Rightarrow S_{3n} = \frac{3n}{2} [6 + (3n - 1)2]$$
$$= 3n (2n + 3)$$

Arithematic Progressions Ex 19.4 Q13

The first number between 100 and 800 which on division by 16 leaves the remainder 7 is 112 and last number is 791.

Thus, the series so formed is 103,119,...,791

Let number of terms be n, then

$$n$$
th term = 791

Then,

$$a_n = a + (n-1)d$$

$$\Rightarrow$$
 791 = 103 + $(n-1)$ 16

Then, sum of all terms of the given series is

$$S_{43} = \frac{44}{2} [103 + 791]$$
$$= \frac{44 \times 894}{2}$$
$$= 19668$$

(i) 25+22+19+16+...+x=115

Here, sum of the given series of say n terms is 115

So, the nth term = x

Here, a = 25 and d = 22 - 25 = -3

$$a_n = a + (n-1)d$$

$$\Rightarrow \qquad x = 25 - 3(n - 1)$$

$$\Rightarrow$$
 $x = 28 - 3n$

// 5.49.439tt

The sum of n terms

$$S_n = \frac{n}{2} [a+1]$$

$$\Rightarrow$$
 115 = $\frac{n}{2}$ [25 + 28 - 3n]

$$\Rightarrow 230 = 53n - 3n^2$$

$$\Rightarrow$$
 $3n^2 - 53n - 230 = 0$

$$\Rightarrow$$
 $3n^2 - 30n - 23n - 230 = 0$

$$\Rightarrow n = 10 \text{ or } \frac{23}{3}$$

But n can't be function

$$\therefore n = 10$$

From (i) and (ii)

$$x = 28 - 3n$$

$$= 28 - 3(10)$$

$$x = -2$$

(ii)
$$1+4+7+10+...+x = 590$$

Here,
$$a=1$$

$$d = 4 - 1 = 3$$

Let there be n terms so the nth term = x

$$\Rightarrow$$
 $x = 1 + (n-1)3$

$$\Rightarrow x = 3n - 2$$

$$\left[\because a_n = a + \left(n - 1\right)d\right]$$

and

$$S_p = 590$$

$$\Rightarrow \frac{n}{2}[a+l] = 590$$

$$\Rightarrow \frac{n}{2}[1+3n-2]=590$$

$$\Rightarrow 3n^2 - n - 1080 = 0$$

$$\Rightarrow$$
 $3n^2 - 60n + 59n - 1080 = 0$

$$\Rightarrow$$
 $3n(n-20)+59(n-20)=0$

$$\Rightarrow$$
 $n = 20$

$$[\because l = x = 3n - 2]$$
= 0
= 0
---(ii)

From (i) and (ii)

$$x = 3n - 2$$
$$= 3(20) - 2$$

$$x = 58$$

Arithematic Progressions Ex 19.4 Q15

Sum first n terms of the given AP is

$$S_n = 3n^2 + 2n$$

$$S_{n-1} = 3(n-1)^2 + 2(n-1)$$

$$a_n = S_n - S_{n-1}$$

$$a_n = 3n^2 + 2n - 3(n-1)^2 - 2(n-1)$$

$$a_n = 6n - 1$$

Given,

$$a_1 = -14 = a + 0d$$
 --- (i)
 $a_5 = 2 = a + 4d$ --- (ii)

Solving (i) and (ii)
$$a_1 = a = -14$$
 and $d = 4$

Let ther be n terms then sum of there n terms = 40

$$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$$

$$\Rightarrow$$
 40 = $\frac{n}{2} [-28 + (n-1) 4]$

$$\Rightarrow$$
 $4n^2 - 32n - 80 = 0$

or
$$n = 10$$
 or -2

But n can't be negative

$$n = 10$$

The given A.P has 10 terms.

Arithematic Progressions Ex 19.4 Q17

Given,

$$a_7 = 10$$

$$S_{14} - S_7 = 17$$

$$S_{14} = 17 + S_7 = 17 + 10 = 27$$

---(1)

From (i) and (ii)

$$S_7 = \frac{7}{2} [2a + (7-1)d]$$

and

$$S_{14} = \frac{14}{2} [2a + 13d]$$

---(iv)

Using $S_n = \frac{n}{2} [2a + (n-1)d]$

$$a = 1$$
 and $d = \frac{1}{7}$

:. The required A.P is

$$1, 1 + \frac{1}{7}, 1 + \frac{2}{7}, 1 + \frac{3}{7}, \dots, +\infty$$

or
$$1, \frac{8}{7}, \frac{9}{7}, \frac{10}{7}, \frac{11}{7}, \dots, \infty$$

Given,

$$a_3 = 7 = a + 2d$$
 ---(i)

solving (i) and (ii)
$$a = -1$$
, $d = 4$

Then, sum of 20 terms of this A.P

$$\Rightarrow S_{20} = \frac{20}{2} [2 + (20 - 1)4] \qquad \left[\text{Using } S_n = \frac{n}{2} [2a + (n - 1)d] \right]$$

$$= 10 \times 74$$

$$= 740$$

First term is -1 common defference = 4, sum of 20 terms = 740.

Arithematic Progressions Ex 19.4 Q19

Given,

.

$$I = a + (n - 1)d$$

$$50 = 2 + (n-1)d$$

$$(n-1)d=48$$

 S_n of all n terms is given 442

$$S_n = \frac{n}{2} [a+l]$$

$$442 = \frac{n}{2} [2+50]$$

or
$$n = 17$$

From (i) and (ii)
$$d = \frac{48}{p-1} = \frac{48}{16} = 3$$

The common difference is 3.

Let no. of terms be 2n

Odd terms sum= $24=T_1+T_3+...+T_{2n-1}$

Even terms sum= $30=T_2+T_4+...+T_{2n}$

Subtract above two equations

nd=6

$$T_{2n} = T_1 + \frac{21}{2}$$

$$T_{2n} - \alpha = \frac{21}{2}$$

$$(2n-1)d = \frac{21}{2}$$

$$12 - \frac{21}{2} = d = \frac{3}{2}$$

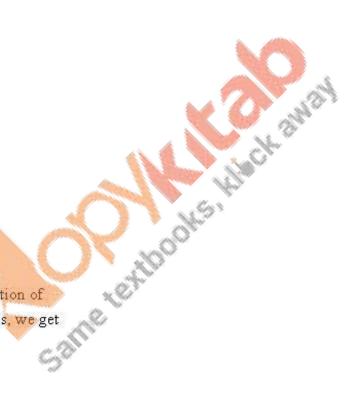
$$\Rightarrow n = 6 \times \frac{2}{3} = 4$$

Total terms = 2n = 8

Subtitute above values in equation of sum of even terms or odd terms, we get

$$a=\frac{3}{2}$$

So series is $\frac{3}{2}$, 3, $\frac{9}{2}$



Let a be the first term of the AP and d is the common difference. Then

$$S_n = \frac{n}{2} \left(2a + (n-1)d \right)$$

$$n^2p = \frac{n}{2}(2a + (n-1)d)$$

$$np = \frac{1}{2} \left[2a + (n-1)d \right]$$

$$2np = 2a + (n-1)d$$
(1)

Again

$$S_m = \frac{m}{2} (2a + (m-1)d)$$

$$m^2 p = \frac{m}{2} (2a + (m-1)d)$$

$$mp = \frac{1}{2} \left[2a + (m-1)d \right]$$

$$2mp = 2a + (m-1)d$$

Now subtract (1) from (2)

$$2p(m-n)=(m-n)d$$

$$d = 2p$$

Therefore

$$2mp = 2a + (m-1) \cdot 2p$$

$$2a = 2p$$

$$a = p$$

The sum up to p terms will be:

$$S_{p} = \frac{p}{2} (2a + (p-1)d)$$

$$= \frac{p}{2} (2p + (p-1) \cdot 2p)$$

$$= \frac{p}{2} (2p + 2p^{2} - 2p)$$

$$= p^{3}$$

Hence it is shown.

Arithematic Progressions Ex 19.4 Q22

$$a_{12} = a + 11d = -13$$

$$s_4 = \frac{4}{2}(2a + 3d) = 24$$

From (i) and (ii)

$$d = -2$$
 and $a = 9$

Then,

Sum of irst 10 terms is

$$S_{10} = \frac{10}{2} [2 \times 9 + (9)(-2)]$$

= 0

$$\left[\text{Using } S_n = \frac{n}{2} \left[2a + (n-1)d \right] \right]$$

Sum of first 10 terms is zero.

$$a_5 = a + 4d = 30$$

$$a_{12} = a + 11d = 65$$

From (i) and (ii)

$$d = 5$$
 and $a = 10$

Then,

Sum of irst 20 terms is

$$S_n = \frac{n}{2} \Big[2a + (n-1)d \Big]$$

$$\Rightarrow S_{20} = \frac{20}{2} [2 \times 10 + (20 - 1)5]$$
= 1150

Sum of first 20 terms is 1150.

Arithematic Progressions Ex 19.4 Q24

Here,

$$a_k = 5k + 1$$

$$a_1 = 5 + 1 = 6$$

$$a_2 = 5(2) + 1 = 11$$

$$a_3 = 5(3) + 1 = 16$$

$$d = 11 - 6 = 16 - 11 = 5$$

$$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$$

$$=\frac{n}{2}[2(6)+(n-1)(5)]$$

$$=\frac{n}{2}[12+5n-5]$$

$$S_n = \frac{n}{2} (5n + 7)$$

Arithematic Progressions Ex 19.4 Q25

sum of all two digit numbers which when divided by 4,

yields 1 as remainder, \Rightarrow all 4n+1 terms with n \geq 3

$$n = 22, a = 13, d = 4$$

sum of terms =
$$\frac{22}{2}$$
[26+21×4]=11×110=1210

Sum of terms 25, 22, 19,...., is 116

$$\frac{n}{2}[50+(n-1)(-3)]=116$$

$$\frac{n}{2}[53-3n]=116$$

$$53n - 3n^2 = 232$$

$$3n^2 - 53n + 232 = 0$$

$$3n^2 - 29n - 24n + 232 = 0$$

$$n(3n-29)-8(3n-29)=0$$

$$(3n-29)(n-8)=0$$

$$\Rightarrow n = 8or \frac{29}{3}$$

n cannot be in fraction, so n=8

last term= $25.7 \times 3=4$

Arithematic Progressions Ex 19.4 Q27

Let the number of terms is n.

Now the sum of the series is:

$$1+3+5+\cdots+2001$$

Here l = 2001 and d = 2.

Therefore

$$l = a + (n-1)d$$

$$2001 = 1 + (n-1) \cdot 2$$

$$2(n-1) = 2000$$

$$n-1=1000$$

$$n = 1001$$

Therefore the sum of the series is:

$$S = \frac{1001}{2} \left[2 + (1001 - 1)2 \right]$$
$$= 1001^{2}$$
$$= 1002001$$

Arithematic Progressions Ex 19.4 Q28

Let the number of terms to be added to the series is n.

Now
$$a = -6$$
 and $d = 0.5$.

Therefore

$$-25 = \frac{n}{2} \Big[2(-6) + (n-1)(0.5) \Big]$$

$$-50 = n \Big[-12 + 0.5n - 0.5 \Big]$$

$$-12.5n + 0.5n^2 + 50 = 0$$

$$n^2 - 25n + 100 = 0$$

$$n = 20.5$$

Therefore the value of n will be either 20 or 5.

Here the first term a=2. Let the common difference is d.

Now

$$\frac{5}{2} [2a + (5-1)d] = \frac{1}{4} \left[\frac{5}{2} [2(a+5d) + (5-1)d] \right]$$

$$\frac{5}{2} [2 \cdot 2 + 4d] = \frac{5}{8} [2 \cdot 2 + 14d]$$

$$10 + 10d = \frac{5}{2} + \frac{35}{4}d$$

$$\frac{5}{4}d = -7.5$$

$$d = -6$$

The 20th term will be:

$$a + (n-1)d = 2 + (20-1)(-6)$$
$$= -112$$

Hence it is shown.

Arithematic Progressions Ex 19.4 Q30

$$S_{(2n+1)} = S_1 = \frac{(2n+1)}{2} [2a + (2n+1-1)d]$$

$$S_1 = \frac{(2n+1)}{2} [2a + 2nd]$$

$$= (2n+1)(a+nd)$$
Some of add town and a

Sum of odd terms = S_2

$$S_{2} = \frac{(n+1)}{2} [2a + (n+1-1)(2d)]$$

$$= \frac{(n+1)}{2} [2a + 2nd]$$

$$S_{2} = (n+1)(a+nd) \qquad ---(ii)$$

From equation (i) and (ii),

$$S_1: S_2 = (2n+1)(a+nd): (n+1)(a+nd)$$

 $S_1: S_2 = (2n+1); (n+1)$

Here,

$$S_n = 3n^2$$

[Given]

Where n is number of term

$$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$$

From (i) and (ii)

$$3n^2 = \frac{n}{2} \left[2a + (n-1)d \right]$$

$$6n = 2a + nd - d$$

Equating both sides

$$6n = nd$$

$$d = 6$$

and

$$0 = 2a - d$$

or
$$d = 2a$$

From (iii) and (iv)

$$a = 3$$
 and $d = 6$

: The required A.P is 3, 9, 15, 21, ..., ∞

Arithematic Progressions Ex 19.4 Q32

$$S_n = nP + \frac{1}{2}n(n-1)Q$$

$$S_n = \frac{n}{2} \left[2P + (n-1)Q \right]$$

We know

$$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$$

Where a =first term and d =common difference comparing (i) and (ii) d = Q

: The common difference is Q.

Let sum of n terms of two A.P be S_n and S'n.

Then, $S_n = 5n + 4$ and $S'_n = 9n + 16$ respectively.

Then, if ratio of sum of n terms of 2A.P is giben, then the ratio of there nth ther is obtained by replacing n by (2n-1).

$$\frac{a_n}{a_n'} = \frac{5(2n-1)+4}{9(2n-1)+16}$$

3. Ratio of there 18th term is

$$\frac{a_{18}}{a'_{18}} = \frac{5(2 \times 18 - 1) + 4}{9(2 \times 18 - 1) + 16}$$
$$= \frac{5 \times 35 + 4}{9 \times 35 + 16}$$
$$= \frac{179}{321}$$

Let sum of n term of 1 A.P series be S_n are other S_n

The,
$$S_n = 7n + 2$$

$$S_n = n + 4$$

If the ratio of sum of n terms of 2 A.P is given, then the ratio of there nth term is obtained by replacing n by (2n-1).

$$\frac{a_n}{a_{n'}} = \frac{7(2n-1)+2}{(2n-1)+4}$$

Putting n = 5 to get the ratio of 5th term, we get

$$\frac{a_5}{a'5} = \frac{7(2 \times 5 - 1) + 2}{(2 \times 5 - 1) + 4} = \frac{65}{13} = \frac{5}{1}$$

The ratio is 5 : 1.

RD Sharma Solutions Class 11 Maths Chapter 19 Ex 19.5

Arithematic Progressions Ex 19.5 Q1(i)

$$\frac{b+c}{a}, \frac{c+a}{b}, \frac{a+b}{c} \text{ will be in A.P if } \frac{c+a}{b} - \frac{b+c}{a} = \frac{a+b}{c} - \frac{c+a}{b}$$
if
$$\frac{ca+a^2-b^2-cb}{ab} = \frac{ab+b^2-c^2-ac}{bc}$$

LHS
$$\Rightarrow \frac{ca + a^2 - b^2 - cb}{ab}$$

$$\Rightarrow \frac{c^2a + a^2c - b^2c - c^2b}{abc}$$

$$\Rightarrow \frac{c(a-b)[a+b+c]}{abc}$$

RHS
$$\Rightarrow \frac{ab + b^2 - c^2 - ac}{bc}$$

 $\Rightarrow \frac{a^2b + ab^2 - ac^2 - a^2c}{abc}$

$$\Rightarrow \frac{a(b-c)[a+b+c]}{abc}$$
and since $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P
$$\frac{1}{b} - \frac{1}{a} = \frac{1}{c} - \frac{1}{b}$$

c(b-a)=a(b-c)

a(b+c), b(c+a), c(a+b) are in A.P if b(c+a) - a(b+c) = c(a+b) - b(c+a)

---(iii)

Arithematic Progressions Ex 19.5 Q1(ii)

LHS =
$$b(c+a) - a(b+c)$$

= $bc+ab-ab-ac$

RHS =
$$c(a+b) - b(c+a)$$

= $ca+cb-bc-ba$
= $a(c-b)$ ---(ii)
and $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P

$$\therefore \frac{1}{a} - \frac{1}{b} = \frac{1}{b} - \frac{1}{c}$$
or $c(b-a) = a(c-b)$ ----(iii)

From (i),(ii) and (iii)
$$a(b+c),b(c+a),c(a+b) \text{ are in A.P}$$

Arithematic Progressions Ex 19.5 Q2

=c(b-a)

LHS =
$$\frac{b}{a+c} - \frac{a}{b+c}$$

 $\frac{ca+c^2-b^2-ab}{(a+b)(b+c)}$

LHS =
$$\frac{b}{a+c} - \frac{a}{b+c}$$

$$\Rightarrow \frac{b^2 + bc - a^2 - ac}{(a+c)(b+c)}$$

LHS =
$$\frac{b}{a+c} - \frac{a}{b+c}$$

 $\Rightarrow \frac{b^2 + bc - a^2 - ac}{(a+c)(b+c)}$

$$\begin{array}{ll}
a+c & b+c \\
\Rightarrow & \frac{b^2+bc-a^2-ac}{(a+c)(b+c)} \\
\Rightarrow & (b-a)(a+b+c)
\end{array}$$

$$\Rightarrow \frac{(a+c)(b+c)}{(a+c)(b+c)}$$

$$\Rightarrow \frac{(b-a)(a+b+c)}{(a+c)(b+c)}$$
---(i)

$$\Rightarrow \frac{(b-a)(a+b+c)}{(a+c)(b+c)} \qquad ---(i)$$
RHS = $\frac{a}{b} - \frac{b}{b}$

and
$$a^2, b^2, c^2$$
 are in A.P

$$b^2 - a^2 = c^2 - b^2$$

Substituting
$$b^2 - a^2$$
 with $c^2 - b^2$
(i) = (ii)

..
$$\frac{a}{b+c}$$
, $\frac{b}{a+c}$, $\frac{c}{a+b}$ are in A.P

Arithematic Progressions Ex 19.5 Q3(i)

$a^{2}(b+c),b^{2}(c+a),c^{2}(a+b)$ are in A.P.

If
$$b^2(c+a) - a^2(b+c) = c^2(a+b) - b^2(a+c)$$

$$\Rightarrow b^2c + b^2a - a^2b - a^2c = c^2a + c^2b - b^2a - b^2c$$

$$\Rightarrow b^{2}c + b^{2}a - a^{2}b - a^{2}c = c^{2}a + c^{2}b - b^{2}a - b^{2}c$$

 $c(b^2 - a^2) + ab(b - a) = a(c^2 - b^2) + bc(c - b)$

$$(b-a)(ab+bc+ca) = (c-b)(ab+bc+ca)$$
Cancelling $ab+bc+ca$ from both sides

Given, b - a = c - b

Cancelling
$$ab + bc + ca$$
 from both sides
 $b - a = c - b$
 $2b = c + a$ which is true

Hence,
$$a^2(b+c)$$
, $(c+a)b^2$ and $c^2(a+b)$ are also in A.P.

---(ii)

---(iii)

[a,b,c] are in A.P.

Arithematic Progressions Ex 19.5 Q3(ii)

(ii) T.P
$$b+c-a,c+a-b,a+b-c$$
 are in A.P.

$$b+c-a,c+a-b,a+b-c$$
 are in A.P only if $(c+a-b)-(b+c-a)=(a+b-c)-(c+a-b)$

LHS
$$\Rightarrow$$
 $(c+a-b)-(b+c-a)$
 \Rightarrow $2a-2b$

---(ii)

RHS
$$\Rightarrow$$
 $(a+b-c)-(c+a-b)$
 \Rightarrow $2b-2c$

Thus, given numbers

Since,

$$a,b,c$$
 are in A.P
 $b-a=c-b$
or $a-b=b-c$
From (i), (ii) and (iii)
LHS = RHS
Thus, given numbers
 $b+c-a,c+a-b,a+b-c$ are in A.P.
Arithematic Progressions Ex 19.5 Q3(iii)
To prove $bc-a^2$, $ca-b^2$, $ab-c^2$ are in A.P.
 $(ca-b^2)-(bc-a^2)=(ab-c^2)-(ca-b^2)$

LHS =
$$(a-b^2-bc+a^2)$$

= $(a-b)[a+b+c]$

and since
$$a,b,c$$
 are in ab

$$b-c=a-b$$

$$\therefore LHS = RHS$$
and
$$Thus, bc-a^2, ca-b^2, ab-c^2 \text{ are in A.P}$$

Arithematic Progressions Ex 19.5 Q4

(i) If
$$\frac{1}{a}$$
, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P

$$\frac{1}{b} - \frac{1}{a} = \frac{1}{c} - \frac{1}{b}$$

LHS $= \frac{1}{b} - \frac{1}{a}$

$$= \frac{a-b}{ab} = \frac{c(a-b)}{abc}$$

$$= \frac{1}{b} - \frac{1}{a}$$

$$= \frac{a - b}{ab} = \frac{c(a - b)}{abc}$$

$$= \frac{1}{c} - \frac{1}{b}$$

$$= \frac{a(b - c)}{abc}$$

 $\frac{b+c}{a} - \frac{c+a}{b} = \frac{c+a}{b} - \frac{a+b}{c}$

 $\frac{b^2 + cb - ac - a^2}{ab} = \frac{c^2 + ac - ab - b^2}{bc}$

LHS
$$= \frac{1}{b} - \frac{1}{a}$$

$$= \frac{a - b}{ab} = \frac{c(a - b)}{abc}$$
RHS
$$= \frac{1}{c} - \frac{1}{b}$$

$$= a(b - c)$$

RHS = $ab - c^2 - ca + b^2$

= (b-c)[a+b+c]

RHS =
$$\frac{1}{b} - \frac{1}{a}$$

$$= \frac{a-b}{ab} = \frac{c(a-b)}{abc}$$

$$= \frac{1}{c} - \frac{1}{b}$$

$$= \frac{a(b-c)}{abc}$$
---(ii)

RHS =
$$\frac{1}{c} - \frac{1}{b}$$

= $\frac{a(b-c)}{abc}$ ---(ii)

---(ii)

$$\Rightarrow \frac{(b-a)(a+b+c)}{ab} = \frac{(c-b)(a+b+c)}{bc}$$
or
$$\frac{a(b-c)}{abc} = \frac{c(a-b)}{abc} \qquad ---(iii)$$

Hence,
$$\frac{1}{a}$$
, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P

$$c(a-b)=a(b-c)$$

If
$$\frac{1}{a}$$
, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P

$$\frac{1}{b} - \frac{1}{a} = \frac{1}{c} - \frac{1}{b}$$

$$\Rightarrow$$
 $c(a-b) = a(b-c)$

---(ii)

Thus, the condition necessary to prove bc, ca, ab in A.P is fullfilled.

Thus, bc, ca, ab, are in A.P.

Arithematic Progressions Ex 19.5 Q5

(i) If
$$(a-c)^2 = 4(a-b)(b-c)$$

$$a^2 + c^2 - 2ac = 4(ab - b^2 - ac + bc)$$

$$\Rightarrow$$
 $a^2 + c^2 4b^2 + 2ac - 4ab - 4bc = 0$

$$\Rightarrow (a+c-2b)^2=0$$

Using
$$(a+b+c)^2 = a^2+b^2+c^2+2ab+2ac+2bc$$

$$a+c-2b=0$$
or $a+c=2b$

and since,

$$a+c=2b$$

Hence proved.

$$(a-c)^2 = 4(a-b)(b-c)$$

(ii) If
$$a^2 + c^2 + 4ac = 2(ab + bc + ca)$$

Then,

$$a^2 + c^2 + 2ac - 2ab - 2bc = 0$$

or
$$(a+c-b)^2-b^2=0$$

$$\left[\because (a+b+c)^2 = a^2+b^2+c^2+2ab+2ac+2bc \right]$$

or
$$b = a + c - b$$

or
$$2b = a + c$$

$$b = \frac{a+c}{2}$$

and since,

$$b = \frac{a+c}{2}$$

Thus, $a^2 + c^2 + 4ac = 2(ab + bc + ca)$ Hence proved.

(iii) If
$$a^3 + c^3 + 6abc = 8b^3$$

or
$$a^3 + c^3 - (2b)^3 + 6abc = 0$$

or
$$a^3 + (-2b)^3 + c^3 + 3 \times a \times (-2b) \times c = 0$$

$$(a-2b+c)=0$$

$$\begin{bmatrix} \because x^3 + y^3 + z^3 + 3xyz = 0 \\ \text{or if } x + y + z = 0 \end{bmatrix}$$

$$a-b=c-b$$

and since, a,b,c are in A.P

a+c=2b

Thus,
$$a - b = c - b$$

Hence proved. $a^3 + c^3 + 6abc = 8b^3$

Arithematic Progressions Ex 19.5 Q6

re,
$$(1, 1) + (1, 1) - (1, 1) - \dots$$

$$a\left(\frac{1}{2}+\frac{1}{2}\right)$$
, $b\left(\frac{1}{2}+\frac{1}{2}\right)$, $c\left(\frac{1}{2}+\frac{1}{2}\right)$ are in A.P.

$$a\left(\frac{1}{b} + \frac{1}{c}\right), \ b\left(\frac{1}{c} + \frac{1}{a}\right), \ c\left(\frac{1}{a} + \frac{1}{b}\right) \text{ are in A.P.}$$

$$a\left(\frac{1}{b} + \frac{1}{c}\right), \ b\left(\frac{1}{c} + \frac{1}{a}\right), \ c\left(\frac{1}{a} + \frac{1}{b}\right) \text{ are in A.P.}$$

$$a = (b c)^{2} (c a)^{2} (a b)$$

 $a = (\frac{1}{c} + \frac{1}{c}) + 1, b = (\frac{1}{c} + \frac{1}{c}) + 1 \text{ are in}$

$$\Rightarrow \qquad a\left(\frac{1}{b} + \frac{1}{c}\right) + 1, \ b\left(\frac{1}{c} + \frac{1}{a}\right) + 1, \ c\left(\frac{1}{a} + \frac{1}{b}\right) + 1 \text{ are in A.P.}$$

$$\Rightarrow \qquad \left(\frac{ac + ab + bc}{bc}\right), \ \left(\frac{ab + bc + ac}{ac}\right), \ \left(\frac{cb + ac + ab}{ab}\right) \text{ are in A.P.}$$

or

$$a\left(\frac{1}{b} + \frac{1}{c}\right) + 1$$

$$(ac + ab + bc)$$

$$a \left(\frac{1}{b} + \frac{1}{c} \right) + 1,$$

 $(ac + ab + bc)$

 $\Rightarrow \frac{1}{bc}, \frac{1}{ac}, \frac{1}{ab}$ are in A.P.

a, b, c are in A.P.

$$b\left(\frac{1}{c}+\right)$$

 $\frac{abc}{bc}$, $\frac{abc}{ac}$, $\frac{abc}{ab}$ are in A.P.

RD Sharma
Solutions
Class 11 Maths
Chapter 19
Ex 19.6

Arithematic Progressions Ex 19.6 Q1 (i) 7 and 13

Let A be the arithematic mean of 7 and 13.

Then,

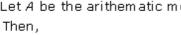
7, A, 13 ar ein A.P

$$\Rightarrow A - 7 = 13 - A$$

$$A = \frac{13+7}{2} = 10$$

A.M is 10.

Let A be the arithematic mean of 12 and -8



12, A, −8 are in A.P
⇒
$$A - 12 = -8 - A$$

$$\Rightarrow A = \frac{12 + (-8)}{2} = 2$$

Then,

(iii)
$$(x-y)$$
 and $(x+y)$

A.M is x.

A - (x - y) = (x + y) - A

Let A be the arithematic mean of (x - y) and (x + y)

(x-y), A, (x+y) are in A.P.

 $A = \frac{(x-y)+(x+y)}{2} = \frac{2x}{2} = x$

Let A_1 , A_2 , A_3 , A_4 be the 4 A.M.s between 4 and 19 Then, 4, A1, A2, A3, A4, 19 are in A.P of 6 terms

Arithematic Progressions Ex 19.6 Q2

$$A_n = a + (n - 1) d$$

 $a_6 = 19 = 4 + (6 - 1) d$
or $d = 3$ ---(i)

or
$$a = 3$$
 ---(1)
Now,
 $A_1 = a + d = 4 + 3 = 7$
 $A_2 = A_1 + d = 7 + 3 = 10$

$$A_3 = A_2 + d = 10 + 3 = 13$$

 $A_4 = A_3 + d = 13 + 3 = 16$

Arithematic Progressions Ex 19.6 Q3

2,
$$a_1$$
, a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , 17

17 = $a + 8d$
 $a = 2 \Rightarrow d = \frac{15}{8}$

$$\Rightarrow d = \frac{1}{8}$$

$$+ \frac{15}{8} = \frac{31}{8}$$

$$a_2 = \frac{31}{8} + \frac{15}{8} = \frac{46}{8}$$

 $2, \frac{31}{8}, \frac{46}{8}, \frac{61}{8}, \frac{76}{8}, \frac{91}{8}, \frac{106}{8}, \frac{121}{8}, \frac{136}{8} = 17$

Arithematic Progressions Ex 19.6 Q4

$$a_2 = \frac{31}{8} + \frac{15}{8} = \frac{46}{8}$$

so we get our final series as

Then,

$$a_1 = 2 + \frac{15}{8} = \frac{31}{8}$$

Let A_1 , A_2 , A_3 , A_4 , A_5 , A_6 be the 6 AM's between 15 and -13

15,
$$A_1$$
, A_2 , A_3 , A_4 , A_5 , A_6 , -13 are in A.P of 8 terms

Here, $-13 = a_8 = a + 7d$
 $\Rightarrow -13 = 15 + 7d$

or $d = -4$
 $\therefore A_1 = a + d = 15 - 4 = 11$
 $A_2 = a + 2d = 15 - 2(4) = 7$
 $A_3 = a + 3d = 15 - 4(3) = 3$
 $A_4 = a + 4d = 15 - 4(4) = -1$
 $A_5 = a + 5d = 15 - 4(5) = -5$
 $A_6 = a + 6d = 15 - 4(6) = -9$

The 6 A.M.s between 15 and -13 are 11, $7, 3, -1, -5$ and -9 .

Arithematic Progressions Ex 19.6 Q5

Let the n A.M's between 3 and 17 be $A_1, A_2, A_3, ..., A_n$

Then,

 $A T Q$
 $\frac{A_n}{A_1} = \frac{3}{1}$

We know that

 $3, A_1, A_2, A_3, ..., A_n, 17$ are in A.P of $n + 2$ terms

So, 17 is the $(n + 2)$ th terms.

i.e. $17 = 3 + (n + 2 - 1)d$ [Using $a_n = a + (n - 1)d$]

or $d = \frac{14}{(n + 1)}$
 $\therefore A_n = 3 + (n + 1 - 1)d$
 $= 3 + \frac{14n}{n+1} = \frac{17n + 3}{n+1}$

---(iii)

From (i), (iii) and iv

 $\frac{A_n}{A_1} = \frac{17n + 3}{3n + 17} = \frac{3}{1}$

n = 6

There are 6 A'M between 3 and 17.

Arithematic Progressions Ex 19.6 Q6

Let there be n A.M between 7 and 71 and let the A.M's be $A_1, A_2, A_3, ..., A_n$.

So,

or

Then,

7,
$$A_1$$
, A_2 , A_3 , ..., A_n , 71 are in A.P of $(n+2)$ terms
$$A_1 = A_2 = A_1 + 5d = 27$$
[Given]

$$A_5 = a_6 = a + 5d = 27$$
 [Given]

$$a+5d=27$$

$$d=4 \qquad [\because a=7] \qquad ---($$

The
$$(n+2)$$
 th term of A.P is 71

$$a_{n+2} = 7 = a + (n+2-1)d$$

n = 15

There are 15 AM's between 7 and 71.

Arithematic Progressions Ex 19.6 Q7

Let $A_1, A_2, A_3, A_4, \ldots, A_n$ be the n AMs inserted between two number a and b.

 $A_1, A_2, A_3, A_4, ..., A_n, b$ are in A.P.

$$A.M = \frac{a+b}{2}$$

The mean of A_1 and A_n

A.M =
$$\frac{a+d+b-d}{2} = \frac{a+b}{2}$$

Similarly mean of A_2 and A_{n-1}

A.M =
$$\frac{a + 2d + b - 2d}{2} = \frac{a + b}{2}$$

Similarly we observe the means is equidistant from begining and the end is constant $\frac{a+b}{2}$.

The AM is
$$\frac{a+b}{2}$$
.

Arithematic Progressions Ex 19.6 Q8 Here,

Then,

 A_2 is the A.M of y and z. and

 A_1 is the A.M of x and y,

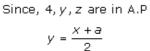
Then, $A_1 = \frac{x + y}{2}$

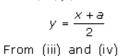
 $A_2 = \frac{y + z}{2}$

 $A.M = \frac{A_1 + A_2}{4}$

(i)
$$\left[\because AM = \frac{a+b}{2}\right]$$
(ii)

Let A.M be the arithematic mean of A_1 and A_2





 $8, a_1, a_2, a_3, a_4, a_5, 26$

a = 8

a + 6d = 26

 $\Rightarrow d = \frac{18}{6} = 3$

$$= \frac{x + a}{2}$$
and (iv)

$$y = \frac{x + a}{2}$$
ii) and (iv)

$$y = \frac{x + a}{2}$$
ii) and (iv)

$$y = \frac{x + a}{2}$$
i) and (iv)

$$= \frac{x+y+y+z}{4}$$
$$= \frac{x+2y+z}{4}$$

Hence, proved A.M between A_1 and A_2 is y.

Arithematic Progressions Ex 19.6 Q9

So series is 8, 11, 14, 17, 20, 23, 26

RD Sharma
Solutions
Class 11 Maths
Chapter 19
Ex 19.7

Arithematic Progressions Ex 19.7 Q1

Let the amount saved by the man in first year be x.

x + (x + 100) + (x + 200) + ... + (x + 900) = 16500

As his saving increased by Rs 100 every year.

100 + 200 + 300 + ... + 900 form a seried of

--- (i)

or

Then,

 \Rightarrow

 \Rightarrow

Then,

Here,

So,

ATQ

10x + 100 + 200 + ... + 900 = 16500

a = 100, d = 100 and n = 9

 $S_9 = \frac{9}{2}[100 + 900] = 4500$

The man saved Rs 1200 in the first year.

Arithematic Progressions Ex 19.7 Q2

32 + 36 + 40 + ... = 200

 $S_n = \frac{n}{2} \left[2a + (n-1)d \right]$

 $400 = 60n + 4n^2$ $n^2 + 15n - 100 = 0$ n = 5 or -20

 $200 = \frac{n}{2} [2(32) + (n-1) 4]$

Let the man save Rs 200 in n numbers of years.

It rorms a series of n terms, with a = 32 and d = 4

10x + (4500) = 16500

 $S_n = \frac{n}{2} [a + l]$

10x = 12000

x = 1200

ATO.

From (i) and (ii)

$$n \neq -20$$
 [It can't be negative]

The man will save Rs 200 in 5 years.

Arithematic Progressions Ex 19.7 Q3

Let the 40 annual instalments form an alithmetic series of common diference d and first instalment a Then, series so firmed is

$$a + (a + d') + (a + 2d') + \dots = 3600$$
or
$$s_n = \frac{n}{2} [2a + (n - 1)d']$$

or
$$3600 = 20[2a + 39d]$$

 $2a + 39d = 180$

and sum of first 30 terms is
$$\frac{2}{3}$$
 of 3600

= 2400

$$\Rightarrow$$
 2400 = $\frac{30}{2}[2a + (29)d]$

2a + 29d = 160

From (i) and (ii)
$$a = 51$$

The first installment paid by this man is Rs 51.

Arithematic Progressions Ex 19.7 Q4

Let the number of Radio manufactured increase by x each year and number of radio manufacture in first year be a. So, A.P formed ATQ is a, a + x, a + 2x, ...

From (i) and (ii)

a = 550. x = 25

or

But,

n = 5

$$a_3 = a + 2x = 600$$

 $a_7 = a + 6x = 700$ ---

(ii) The total produce in 7 years is sum of produce in the first 7 years.

$$S_7 = \frac{7}{2} [550 + 700] \qquad \left[\because S_n = \frac{n}{2} [a+l] \right]$$

4375 Radio's were manufactured in first 7 years.

(iii) The product in 10th year $a_{10} = a + 9d$

= 4375

775 Radio's were manufactured in the 10th year.

Arithematic Progressions Ex 19.7 Q5

There are 25 trees at equal distance of 5 m in a line with a well(w), and the distance of the well from the nearesst tree = 10 m.

Thus,

The total distance travelled by gardener to tree 1 and back is 2×10 m = 20 m

Similarly for all the 25 trees.

The distance covered by gardener is

This forms a series of 1st term a = 10, common difference a = 5 and n = 25

$$\Rightarrow S_{25} = \frac{25}{2} [2 \times 10 + (24)5] = 25 [10 + 60] = 1750 \text{ m} \qquad ---(ii)$$

From (i) and (ii)

Total distance = $2 \times 1750 \text{ m} = 3500 \text{ m}$.

Arithematic Progressions Ex 19.7 Q6

The man counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than preceding minute.

Then, the amount counted in first 30 minute = $Rs 180 \times 30 = Rs 5400$

--- (i)

The amount left to be counted after 30 minute = Rs 10710 - 5400 = Rs 5310 ATQ

Let time taken to count 5310 be t

$$S_t = \frac{t}{2} [(180 - 3) + (t - 1)(-3)]$$

$$5310 = \frac{t}{2} [200 - 3t]$$

t = 59 minuteor

Thus, the total time taken by the man to count Rs 10710 is (59 + 30) = 89 minutes.

Arithematic Progressions Ex 19.7 Q7

The piece of equipment deprecites 15% in first year i.e., $\frac{15}{100} \times 600,000 = Rs 90,000$

= Rs 510,000

The equipment deprecites at the rate 135% in 2nd year i.e.,
$$\frac{135}{1000} \times 600,000 = 81000$$

 \therefore Value after 2nd year = 81000

The value after 3rd year = $\frac{12}{100} \times 600000 = 72000$

=405000

 $S_{10} = \frac{10}{2} [2 \times 81000 + (9)(-9000)]$

Using $S_n = \frac{n}{2} \left[2a + (n-1)d \right]$ = 5[81000]

---(ii)

: The cost of machine after 10 years = Rs 600000 - 405000 = 105000.

Arithematic Progressions Ex 19.7 Q8

Total cost of tractor

=
$$6000 + [(500 + 12\% \text{ of } 6000 \text{ for } 1 \text{ year}) + (500 + 12\% \text{ of } 5500 \text{ 1 year}) + \dots + 12 \text{ times}]$$

= $6000 + 6000 + \frac{12}{100}(6000 + 5500 + \dots + 12 \text{ times})$

$$= 12000 + \frac{12}{100} \left[\frac{12}{2} (6000 + 5000) \right]$$

$$= 12000 + \frac{12}{100} \times \frac{12}{2} \times 6500$$

= 16680

Total cost of tractor = Rs. 16680

Arithematic Progressions Ex 19.7 Q9

Total cost of Scooter

$$= (4000 + 18000) + S.I.$$
 for 1 year on $(18000 + 17000 +$ to 18 times)

= 22000 + S.I. for 1 year on
$$\left\{ \frac{18}{2} \left(18000 + 1000 \right) \right\}$$

= 22000 + 9 $\left(19000 \right) \times \frac{10}{100}$

= Rs 39100

Total cost of Scooter = Rs. 39100

Arithematic Progressions Ex 19.7 Q10

First year the person income is: 300,000

Second year his income will be: 300,000 + 10,000 = 310,000

This way he receives the amount after 20 years will be: $300,000 + 310,000 + \cdots + 490,000$

This is an AP with first term a = 300000 and common difference d = 10,000. Therefore

$$S = \frac{20}{2} [2 \cdot 300000 + (20 - 1)10000]$$
$$= 10 [600000 + 190000]$$
$$= 7900000$$

Arithematic Progressions Ex 19.7 Q11

In 1st installment the man paid 100 rupees.

In 2nd installment the man paid (100+5)=105 rupees,

Likewise he pays up to the 30th installment as follows: $100+105+\cdots+(100+5\times29)$

This is an AP with
$$a = 100$$
 and common difference $d = 5$.

Therefore at the 30th installment the amount he will pay

Therefore at the 30th installment the amount he will pay
$$T_{30} = 100 + (30 - 1)(5)$$

$$= 100 + 145$$

Arithematic Progressions Ex 19.7 Q12

= 245

Suppose carpenter took n days to finish his job.

First day camenter made five frames $a_1 = 5$

Each day after first day he made two more frames d=2

∴ On nⁱⁿ day frames made by carpenter are,

$$a_n = a_1 + (n-1)d$$

$$\Rightarrow a_n = 5 + (n-1)2$$

Sum of all the frames till no day is

$$S = \frac{n}{2} [a_i + a_n]$$

$$192 = \frac{n}{2} [5 + 5 + (n - 1)2]$$

$$192 = 5n + n^2 - n$$

$$n^2 + 4n - 192 = 0$$

$$(n+16)(n-12)=0$$

$$n = -16 \text{ or } n = 12$$

But number of days cannot be negative hence n = 12.

The carpenter took 12 days to finish his job.

Arithematic Progressions Ex 19.7 Q13

We know that sum of interior angles of a polygon with n sides is given by, $a_n = 180^{\circ}(n-2)$

Sum of interior angles of a polygon with 3 sides is given by,

$$a_1 = 180^{\circ} (3 - 2) = 180^{\circ} \dots (i)$$

Sum of interior angles of a polygon with 7 sides is given by,

Sum of interior angles of a polygon with 5 sides is given by,

$$a_s = 180^{\circ}(5 - 2) = 540^{\circ}....(iii)$$

From eq" (i), eq" (ii) and eq" (iii) we get,

$$a_4 = 360^\circ = 180^\circ + 180^\circ = a_1 + 180^\circ = a_1 + d$$

$$a_s = 540^\circ = 180^\circ + 360^\circ = a_1 + 2d$$

Hence the sums of the interior angles of polygons with 3, 4, 5, 6,... sides form an arithmetic progression.

Sum of interior angles of 21 sided polygon