EXERCISE 15D

Answer 1:

(i)

radius (r) = 3.5 cm

Volume of sphere $=\frac{4}{3}\pi r^3$ cubic unit

$$= \frac{4}{3} \times \left(\frac{22}{7}\right) \times (3.5)^3 \text{cm}^3$$
$$= 179.67 \text{ cm}^3$$

Surface area of Sphere = $4\pi r^2$ sq. Unit

$$= 4 \times \left(\frac{22}{7}\right) \times (3.5)^2 \text{cm}^2$$
$$= 154 \text{ cm}^2$$

(ii)

radius (r) = 4.2 cm

Volume of sphere $=\frac{4}{3}\pi r^3$ cubic unit

$$= \frac{4}{3} \times \left(\frac{22}{7}\right) \times (4.2)^3 \text{cm}^3$$
$$= 310.464 \text{ cm}^3$$

Surface area of Sphere = $4\pi r^2$ sq. Unit

$$= 4 \times \left(\frac{22}{7}\right) \times (4.2)^2 \text{cm}^2$$
$$= 221.76 \text{ cm}^2$$

(iii)

radius (r) = 5 cm

Volume of sphere $=\frac{4}{3}\pi r^3$ cubic unit

$$= \frac{4}{3} \times \left(\frac{22}{7}\right) \times (5)^3 \text{cm}^3$$
$$= 523.81 \text{ cm}^3$$

Surface area of Sphere = $4\pi r^2$ sq. Unit

$$= 4 \times \left(\frac{22}{7}\right) \times (5)^2 \text{cm}^2$$
$$= 314.28 \text{ cm}^2$$

Answer 2:

Volume of sphere $=\frac{4}{3}\pi r^3 = 38808 \text{ cm}^3$ (Given $V = 38808 \text{ cm}^3$) $\Rightarrow \frac{4}{3} \times \left(\frac{22}{7}\right) \times (r)^3 = 38808$ $r^3 = 9261$ $r = \sqrt[3]{9261}$ \Rightarrow r = 21 cm

Surface area of Sphere = $4\pi r^2$ sq. Unit

 $=4 \times \left(\frac{22}{7}\right) \times (21)^2 \text{cm}^2$ $= 5544 \text{ cm}^2$

Answer 3:

Volume of sphere $=\frac{4}{3}\pi r^3 = 606.375 m^3$ (Given V = 606.375 m³) $\Rightarrow \frac{4}{3} \times \left(\frac{22}{7}\right) \times (r)^3 = 606.375$

CLASS IX

 $r^3 = 144.703125$

 \Rightarrow

 $r = \sqrt[3]{144.703125}$ r = 5.25 m

Surface area of Sphere = $4\pi r^2$ sq. Unit

$$= 4 \times \left(\frac{22}{7}\right) \times (5.25)^2 m^2$$
$$= 346.5 m^2$$

Answer 4:

let radius of sphere = r cm Surface area of Sphere = $4\pi r^2 = 154 \text{ cm}^2$ (Given S = 154 cm^2) $4 \times \left(\frac{22}{7}\right) \times (r)^2 = 154$ $r^2 = \frac{49}{4}$ r = $\frac{7}{2}$ cm = 3.5 cm Volume of sphere = $\frac{4}{3}\pi r^3$ cubic unit $\Rightarrow = \frac{4}{3} \times \left(\frac{22}{7}\right) \times (3.5)^3 \text{ cm}^3$ $\Rightarrow = 179.67 \text{ cm}^3$

Answer 5:

let radius of sphere = r cm

Surface area of Sphere = $4\pi r^2 = 576\pi \text{ cm}^2$

 $4 \times \pi \times (r)^2 = 576\pi$

$$r^2 = 144$$

r = 12 cm

Volume of sphere $=\frac{4}{3}\pi r^3$ cubic unit

RS Aggarwal solutions

(Given $S = 576\pi cm^2$)

 $\Rightarrow \frac{4}{3} \times \pi \times (12)^3 \text{cm}^3 = 2304 \pi \text{cm}^3$

Answer 6:

Given :

diameter of leadshot = 3 mm

 \Rightarrow

radius (r) = 1.5 mm = 0.15 cm

dimension of cubiod = 12 cm x 11 cm x 9 cm

Volume of Cuboid = no of lead shots x volume of 1 lead shot

 \Rightarrow no of lead shots = $\frac{Volume of Cuboid}{volume of 1 leadshot}$

 $=\frac{(12\times11\times9)}{\left(\frac{4}{3}\right)\times\left(\frac{22}{7}\right)\times(0.15)^{3}}$

 $= \frac{(12 \times 11 \times 9 \times 3 \times 7)}{4 \times 22 \times (0.15) \times (0.15) \times (0.15)}$

Answer 7:

Given :

radius (r) of one lead ball = 1 cm

radius (R) of sphere = 8 cm

Volume of Sphere = no of lead balls x volume of 1 lead ball

 \Rightarrow no of lead balls = $\frac{Volume of Sphere}{volume of 1 lead ball}$

$$= \frac{\left(\frac{4}{3}\right) \times \pi \times R^3}{\left(\frac{4}{3}\right) \times \pi \times r^3}$$

$$\Rightarrow \frac{R^3}{r^3} = \frac{8^3}{1^3} = 512$$

Answer 8:

Given : radius (R) of sphere = 3 cm diameter of balls = 0.6 cm \therefore radius (r) of balls = 0.3 cm

Volume of Solid Sphere = no of small balls casted x volume of 1 small ball

 \Rightarrow no of small balls = $\frac{Volume of Sphere}{volume of 1 lead ball}$

$$= \frac{\left(\frac{4}{3}\right) \times \pi \times R^3}{\left(\frac{4}{3}\right) \times \pi \times r^3}$$

$$\Rightarrow \frac{R^3}{r^3} = \frac{3^3}{(0.3)^3} = 1000$$

Answer 9:

Given :

radius (R) of sphere = 10.5 cm

radius (r) of cones = 3.5 cm

CLASS IX

height of cone (h) = 3 cm

Volume of Sphere = no of cones casted x volume of 1 small cone

 \Rightarrow no of cones = $\frac{Volume of Sphere}{volume of 1small cone}$

$$= \frac{\left(\frac{4}{3}\right) \times \pi \times R^3}{\left(\frac{1}{3}\right) \times \pi \times r^2 \times h}$$

$$= \frac{4 \times R^3}{r^2 \times h} = \frac{4 \times (10.5)^3}{(3.5)^2 \times 3} = 126$$

Answer 10:

Given:

Diameter of sphere = 12 cm

 \Rightarrow radius (r) of sphere = 6 cm

Diameter of cylinder = 8 cm

 \Rightarrow radius of cylinder (R) = 4 cm

height of cylinder (H) = 90cm

Volume of Cylinder = no of sphere x volume of onesphere

 \Rightarrow no of sphere = $\frac{Volume of Cylinder}{volume of 1 sphere}$

$$= \frac{\pi \times R^2 \times H}{\left(\frac{4}{3}\right) \times \pi \times r^3}$$

$$= \frac{3 \times R^2 \times H}{4 \times r^3} = \frac{3 \times (4)^2 \times 90}{4 \times (6)^3} = 5$$

CLASS IX

Answer 11:

Given :

Diameter of sphere = 6 cm

 \Rightarrow radius of sphere (R) = 3 cm

Diameter of wire = 2mm

$$\Rightarrow$$
 radius of wire (r) = 1mm = 0.1 cm

let the length of wire is h cm

Volume of Wire = volume of Sphere $\pi r^2 h = \frac{4}{3}\pi R^3$

 $\Rightarrow h = \frac{\left(\frac{4}{3}\right) \times \pi \times R^3}{\pi \times r^2}$

$$=\frac{4\times R^3}{3\times r^2}$$

 $= \frac{4 \times 3^3}{3 \times (0.1)^2} = \frac{36}{0.01}$

$$= 3600 \text{ cm} = 36 \text{ m}$$

Answer 12:

Given :

Diameter of sphere = 18 cm

 \Rightarrow radius of sphere (R) = 9 cm

length of wire (h) = 108 m = 10800 cm

let the radius of wire is r cm

Volume of Wire = volume of Sphere

$$\pi r^2 h = \frac{4}{3}\pi R^3$$

$$\Rightarrow r^2 = \frac{\left(\frac{4}{3}\right) \times \pi \times R^3}{\pi \times h}$$

$$= \frac{4 \times R^3}{3 \times h}$$

$$=\frac{4\times9^{3}}{3\times10800}$$

$$r^2 = \frac{9}{100}$$

 $\Rightarrow r = \sqrt{\frac{9}{100}} = \frac{3}{10} = 0.3 \text{ cm}$

diameter of wire = 2 x radius of wire

= 2 x r = 2 x 0.3

= 0.6 cm

Answer 13:

Given :

 \Rightarrow radius of sphere (R) = 7.8 cm

length of cone (h) = 31.2 cm

let the radius of base of cone is r cm

Volume of Cone = volume of Sphere $\frac{1}{3}\pi r^2 h = \frac{4}{3}\pi R^3$

$$\Rightarrow r^{2} = \frac{\left(\frac{4}{3}\right) \times \pi \times R^{3}}{\left(\frac{1}{3}\right) \times \pi \times h}$$

$$=\frac{4\times R^3}{h}$$

 $=\frac{4\times(7.8)^3}{31.2}$

 \Rightarrow

	$r^2 =$	60.84	•
	$r = \sqrt{60.8}$	$\overline{4} = 7.8$	cm
61	6.0	•	

diameter of base of Cone = 2 x radius of base of Cone

= 2 x r = 2 x 7.8

= 15.6 cm

Answer 14:

Given :

Diameter of sphere = 28 cm

 \Rightarrow radius of sphere (R) = 14 cm

Diameter of cone = 35 cm

 \Rightarrow radius of cone (r) = 17.5cm

let the height of cone is h cm

Volume of Cone = Volume of Sphere $\frac{1}{3}\pi r^2 h = \frac{4}{3}\pi R^3$

$$\Rightarrow h = \frac{\binom{4}{3} \times \pi \times R^3}{\binom{1}{3} \times \pi \times r^2}$$

$$=\frac{4\times R^3}{r^2}$$

 $= \frac{4 \times 14^3}{(17.5)^2} = \frac{10976}{306.25} \text{cm}$

= 35.84 cm

Answer 15:

Given :

radius of big ball(R) = 3 cm

 $radius \ of first \ ball \ (r_1) \quad = 1.5 cm$

radius of second ball $(r_2) = 2cm$

let radius of third ball is $r_3 cm$

Volume of Big Ball = Volume of first ball + Volume of Second ball + Volume of third ball $\frac{4}{3}\pi R^3 = \frac{4}{3}\pi r_1^3 + \frac{4}{3}\pi r_2^3 + \frac{4}{3}\pi r_3^3$

$$\frac{4}{3}\pi R^{3} = \frac{4}{3}\pi (r_{1}^{3} + r_{2}^{3} + r_{3}^{3})$$

$$R^{3} = (r_{1}^{3} + r_{2}^{3} + r_{3}^{3})$$

$$3^{3} = \{(1.5)^{3} + (2)^{3} + r_{3}^{3}\}$$

$$27 = 3.375 + 8 + r_{3}^{3}$$

$$r_{3}^{3} = 27 - 11.375$$

$$r_{3}^{3} = 15.625$$

$$r_{3} = \sqrt[3]{15.625} = 2.5 \text{ cm}$$
radius of third ball = 2.5 cm

Answer 16:

let the radii of first sphere is x cm and second sphere is y cm and Surface area is S_1 and S_2 .

 $\frac{x}{y} = \frac{1}{2}$ (Given) $\Rightarrow \qquad y = 2x \qquad \dots eq.(i)$ so, $\frac{S_1}{S_2} = \frac{x}{y}$ $= \frac{x^2}{y^2} = \frac{x^2}{(2x)^2} \qquad [From eq(i)]$ $= \frac{1}{4}$ $\Rightarrow S_1:S_2 = 1:4$

Answer 17:

let the radii of twosphere is $r\$ and R , Volume is $\ V_1$ and $V_2 respectively$

CLASS IX

then,

$$\frac{4\pi r^2}{4\pi R^2} = \frac{1}{4} \qquad \text{(Given)}$$

$$\Rightarrow \frac{r^2}{R^2} = \frac{1}{4}$$

$$\Rightarrow \frac{r}{R} = \frac{1}{2} \qquad \dots \qquad \text{eq(i)}$$
so,
$$\frac{V_1}{V_2} = \frac{\left(\frac{4}{3}\right) \times \pi \times r^3}{\left(\frac{4}{3}\right) \times \pi \times R^3}$$

$$= \left(\frac{r}{R}\right)^3$$

$$= \left(\frac{1}{2}\right)^3$$

$$= \frac{1}{8}$$

 \Rightarrow V₁:V₂ = 1:8

Answer 18:

Given:

radius of cylindrical tub(R) = 12 cm

depth of tub = 20 cm

level of water raise (h) = 6.75 cm

let the radius of ball is r

Volume of iron ball = volume of water raised

 $\Rightarrow \frac{4}{3}\pi r^3 = \pi R^2 h$

CLASS IX

RS Aggarwal solutions

[From eq(i)]

$$\Rightarrow r^{3} = \frac{3 \times R^{2} \times h}{4}$$
$$= \frac{4}{3} = \frac{2916}{4}$$
$$r^{3} = 729$$
$$\Rightarrow r = 9 \text{ cm}$$

Answer 19:

Given:

radius of cylindrical bucket (R) = 15 cmheight of bucket = 20 cmradius of ball (r) = 9 cm

let the increase in water level is x

Volume of water raised = volume of spherical ball $\pi R^2 x = \frac{4}{3}\pi r^3$ $\Rightarrow \qquad x = \frac{4 \times r^3}{3 \times R^2}$ $\Rightarrow \qquad = \frac{4 \times 9^3}{3 \times 15^2}$ $= \frac{2916}{675}$ x = 4.32 cm

Answer 20:

Given:

CLASS IX

Outer Diameter of shell = 12 cm

 \Rightarrow Outer radius of shell(R) = 6 cm

Inner Diameter of shell = 8cm

 \Rightarrow Inner radius of shell (r) = 4cm

Volume of outer Shell = $\frac{4}{3}\pi R^3$ = $\frac{4}{3} \times \left(\frac{22}{7}\right) \times 6^3$ = 905.15 cm³

Volume of inner Shell = $\frac{4}{3}\pi r^3$ = $\frac{4}{3} \times \left(\frac{22}{7}\right) \times 4^3$

$$=$$
 268.20 cm³

so, Volume of metal contained in shell = (Volume of outer Shell) - (Volume of inner Shell)

$$= (905.15) - (268.20) \text{ cm}^{3}$$

 $= 636.95 \text{ cm}^3$

Outer Surface area = $4\pi R^2$ sq. unit

$$=4 \times \left(\frac{22}{7}\right) \times 6^2 \text{ cm}^2$$

 $= 452.57 \text{ cm}^2$

Answer 21:

Given:

CLASS IX

Externalradii of shell(R)	= 9 cm
Internalradii of shell(r)	= 8 cm
density of metal (d)	$= 4.5 \text{ gm per cm}^3$

Volume of hollow shell
$$=$$
 $\frac{4}{3} \times \pi \times (R^3 - r^3)$
 $= \frac{4}{3} \times \left(\frac{22}{7}\right) \times (9^3 - 8^3) \text{ cm}^3$
 $= \frac{4}{3} \times \left(\frac{22}{7}\right) \times 6^3 \text{ cm}^3$
 $= \frac{4}{3} \times \left(\frac{22}{7}\right) \times 217 \text{ cm}^3$
 $= 909.33 \text{ cm}^3$

Density $=\frac{Weight}{Volume}$

 \therefore Weight = Volume x Density

 $= 909.33 \times 4.5 \text{ g}$

= 4092 g

= 4.092 kg (1 kg = 1000 g)

Answer	22:

Given:

radius of hemisphere (R) = 9 cm

Height of cone (h) = 72 cm

let the base radius of cone is r.

Volume of Cone = volume of hemisphere

$$\Rightarrow \qquad \frac{1}{3}\pi r^2 h = \frac{2}{3}\pi R^3$$

$$\begin{pmatrix} \frac{1}{3} \end{pmatrix} \times \pi \times r^2 \times 72 = \begin{pmatrix} \frac{2}{3} \end{pmatrix} \times \pi \times 9^3$$

$$\Rightarrow r^2 = \frac{2 \times 9 \times 9 \times 9}{72}$$

$$= \frac{1458}{72}$$

$$r^2 = 20.25$$

 \Rightarrow r = 4.5 cm

base radius of cone = 4.5 cm

Answer 23:

Given:

Radius of hemispherical bowl (R) = 9 cm

diameter of bottle = 3 cm

 \Rightarrow radius of bottle (r) = 1.5 cm

Height of bottle(h) =
$$4 \text{ cm}$$

No. Of bottles $=\frac{Volume of bowl}{Volume of one bottle}$

$$=\frac{\left(\frac{2}{3}\right)\times\pi\times(9)^3}{\pi\times(1.5)^2\times4}$$

$$=\left(\frac{2\times3\times81}{9}\right)$$

= 54

Answer 24:

CLASS IX

Given:

internalRadius of bowl (r) = 4 cm
thickness of
$$bowl(t) = 0.5$$
 cm

$$\Rightarrow$$
 External radius of bowl (R) = Internal radius + thickness

=(r + t) cm= (4+0.5) cm =

4.5 cm

Volume of steel used = Volume of outer hemisphere – Volume of Inner hemisphere

$$\Rightarrow = \frac{2}{3}\pi R^3 - \frac{2}{3}\pi r^3$$

$$= \frac{2}{3}\pi (R^3 - r^3)$$

$$= \left(\frac{2}{3}\right) \times \pi \times ((4.5)^3 - (4)^3)$$

$$= \left(\frac{2}{3}\right) \times \left(\frac{22}{7}\right) \times 27.125$$

$$= 56.83 \text{ cm}^3$$

Answer 25:

Given:

innerRadius of bowl (r) = 5 cm
thickness of
$$bowl(t) = 0.25$$
 cm

 \Rightarrow Outer radius of bowl (R) = Internal radius + thickness

=(r + t) cm= (5+0.25) cm =

5.25 cm

Outer Curved surface = $2\pi R^2$ sq. Unit

CLASS IX

$$= 2 \times \left(\frac{22}{7}\right) \times (5.25)^2$$

 $= 173.25 \text{ cm}^2$

Answer 26:

Given:

 \Rightarrow inner Radius of bowl (r) = 5.25 cm

Inner Curved surface area of bowl $= 2\pi r^2$

 $= 2 \times \left(\frac{22}{7}\right) \times (5.25)^2$

 $= 173.25 \text{ cm}^2$

Cost of painting
$$100 \text{ cm}^2 = \text{Rs.} 32$$

⇒ for 173.25 cm² = Rs. $(\frac{32 \times 173.25}{100})$ = Rs. 55.44

Answer 27: let the diameter of earth is d

 \Rightarrow radius = $\frac{d}{2}$

thus, diameter of moon will be $\frac{2}{3}$

 \Rightarrow radius of moon $=\frac{d}{8}$

$$\frac{Volume of earth}{Volume of moon} = \frac{\left(\frac{4}{3}\right) \times \pi \times \left(\frac{d}{2}\right)^3}{\frac{4}{3} \times \pi \times \left(\frac{d}{8}\right)^3}$$
$$= \frac{\left(\frac{d^3}{8}\right)}{\left(\frac{d^3}{512}\right)} = \frac{d}{8}$$

= 64

CLASS IX

 $\Rightarrow Volume of moon = \frac{1}{64} \times Voulme of Earth$

Answer 28:

Volume of Solid hemisphere = Surface area of solid hemisphere (Given)

$$\Rightarrow \frac{2}{3}\pi r^3 = 3\pi r^2$$
$$r = \frac{9}{2} \text{ unit}$$

$$\Rightarrow$$
 diameter = 2 × r = 2 × $\frac{9}{2}$ = 9 unit