VOLUME AND SURFACE AREA OF SOLIDS - CHAPTER15

EXERCISE - 15A

Answer1.

(i) Given,
$$l = 12cm$$
, $b = 8cm$, $h = 4.5cm$.

Volume of cuboid= $(l \times b \times h)$ cubic units

$$= 12 \text{cm} \times 8 \text{cm} \times 4.5 \text{cm}$$

 $= 432 \text{cm}^3$

Lateral surface area of cuboid

=
$$[2(l + b) \times h]$$
 surface unit

$$= [2(12+8) \times 4.5] \text{ cm}^2$$

$$= [2 \times 20 \times 4.5] \text{ cm}^2$$

$$= 180 \text{ cm}^2$$

Total surface area of cuboid

$$= 2(lb + bh + hl)$$
 square units

$$= 2(12cm \times 8cm + 8cm \times 4.5cm + 4.5cm \times 12cm)$$

$$= 2(96\text{cm}^2 + 36\text{cm}^2 + 54\text{cm}^2)$$

$$=2 \times 186 \text{cm}^2$$

$$= 372 \text{ cm}^2$$

(ii) Given,
$$l = 26m$$
, $b = 14m$, $h = 6.5m$

Volume of cuboid = $(l \times b \times h)$ cubic unit

$$= 26m \times 14m \times 6.5m$$

$$= 2366m^3$$

Lateral surface Area of cuboid

=
$$[2(l + b) \times h]$$
 surface unit
= $[2 (26+14) \times 6.5]$ m²
= $[2 \times 40 \times 6.5]$ m²
= 520 m².

Total surface Area of cuboid

=
$$2(lb + bh + hl)$$
 square units
= $2(26 \times 14 + 14 \times 6.5 + 6.5 \times 26)$
= $2(364+91+169)$
= 2×624
= $1248m^2$.

(iii)

Given, l= 15m, b= 6m, h= 5dm
$$h=5\times 1/10m \ [11Equation Section (Next) \because 1dm=1/10m]$$
 h= 0.5m

Volume of cuboid = $(1 \times b \times h)$ cubic unit = $(15 \times 6 \times 0.5) \text{ m}^3$ = 45m^3

Lateral surface Area of cuboid

=
$$[2(l + b) \times h]$$
 square unit
= $[2(15+6) \times 0.5]$ m²
= $[2 \times 21 \times 0.5]$ m²
= 21 m².

Total surface Area of cuboid

=2(lb + bh + hl) square units
=2(15×6 + 6×0.5 + 15×0.5)
$$m^2$$

=2(90+3+7.5) m^2
=2×100.5 m^2
=201 m^2 .

(iv) Given,
$$l=24m$$

$$b=25cm=0.25m \ [\because 1cm=1/100 \ m]$$

$$h=6m,$$

Volume of cuboid = $(l \times b \times h)$ cubic unit

=
$$(24 \times .25 \times 6) \text{ m}^3$$

= 36m^3

Lateral surface area of cuboid

=
$$[2(l + b) \times h]$$
 square unit
= $[2(24+0.25) \times 6]$ m²
= $[2\times24.25\times6]$
= 291 m².

Total surface area of cuboid

=2(lb + bh + hl) square units
=2(24×0.25 + 0.25×6 + 24×6)
$$m^2$$

=2(6+1.5+144) m^2
= 2× 151.2
= 303 m^2

Answer2. Given,

A match box measure = $4 \text{cm} \times 2.5 \text{cm} \times 1.5 \text{cm}$

Volume of 1 match box = $4 \text{cm} \times 2.5 \text{cm} \times 1.5 \text{cm}$

$$= 15 cm^{3}$$

- : volume of one matchbox = 15cm^3
- ∴ volume of 12 matchbox = 15×12 cm³

 $= 180 \text{ cm}^3$.

Answer 3. Given,

Cuboid water tank

Length
$$(l) = 6m$$

$$Width(b) = 5m$$

$$Height(h)=4.5m$$

Volume of cuboid water tank = $(l \times b \times h) = (6 \times 5 \times 4.5) \text{ m}^3 = 135 \text{ m}^3$

Given, $1m^3 = 1000$ litres

So,
$$135m^3 = 135 \times 1000$$
litres

$$= 135000$$
 litre

Litre of water hold by tank = 135000 litre.

Answer 4. Given,

Capacity of a cuboid tank = 50000 litre

$$Length(l) = 10m$$

$$Depth(h)=2.5m$$

$$Width(b)=?$$

Volume of tank = length \times depth \times width

Capacity = 50000 litre

$$: 1000 \text{ litre} = 1\text{m}^3 \text{ (given)}$$

$$\therefore 1 \text{ litre} = \frac{1}{1000} \text{m}^3$$

CLASS IX

$$\therefore 50000 \text{ litre} = \frac{50000}{1000} \text{m}^3 = 50 \text{m}^3$$

$$50 = 10 \times b \times 2.5$$

$$50 = 25 \times b$$

$$b = \frac{50}{25} = 2m$$

width of tank = 2m

Answer5. Given,

Go down measures = $40m \times 25m \times 15m$

Each wooden crates measures = $1.5m \times 1.25m \times 0.5m$

Maximum no. of wooden crates =
$$\frac{volumeofgodown}{volumeofonewoodencrates}$$
$$= \frac{40m \times 25m \times 15m}{1.5m \times 1.25m \times 0.5m}$$
$$15000m^3$$

Maximum no. of wooden crates = 16000.

Answer 6. Given,

Dimensions of plank = $5m \times 25m \times 10cm (5m \times 0.25m \times 0.1m)$

Length of pit(l) = 20m

Width of pit(b) = 6m

Deep of pit(h) = 80cm = 0.8m

Total no. of planks stored in pit = $\frac{volumeofpit}{volumeofoneplank}$

Volume of pit = $l \times b \times h$

$$=20\times6\times0.8=96$$
m³

Volume of plank = $l \times b \times h$

$$= 5 \times 0.25 \times 0.1 = 0.125 \text{m}^3$$

Total no. of plank stored in pit = $96m^3/0.125m^3$

$$= 768.$$

Answer 7. Given,

Length of wall(l) =
$$8m = 800cm {\because 1m = 100cm}$$

Height of wall(h) =
$$6m = 600cm$$

Thick of wall(b) =
$$22.5$$
cm

Volume of wall = $l \times b \times h$

$$=800\times600\times22.5$$

$$= 10800000 \text{cm}^3$$

Dimension of each brick = $25 \text{cm} \times 11.25 \text{cm} \times 6 \text{cm}$

Volume of each brick = $l \times b \times h$

$$= 1687.5 \text{cm}^3$$

Let total required bricks to construct wall = x

$$\mathbf{x} = \frac{volume of wall}{volume of one brick}$$

$$=\frac{10800000}{1687.5}$$

$$x = 6400$$

Answer 8. Given,

Length of cistern = 8m(l)

Breadth of cistern = 6m(b)

Depth of cistern = 2.5 m

Let, capacity of closed rectangular cistern = x

 $x = l \times b \times h$

 $=8\times6\times2.5$

 $= 120 m^3$

Area of the iron sheet require to make the cistern = surface area of cistern surface area of cistern = 2(lb+bh+hl)

$$= 2(8 \times 6 + 6 \times 2.5 + 2.5 \times 8)$$

$$=2(48+15.0+20)$$

 $=2 \times 83$

 $= 166 \,\mathrm{m}^2$

Answer9. Given,

Room dimensions = $(9m \times 8m \times 6.5m)$

Room has one door, two windows

dimension of door = $2m \times 1.5m$

dimensions of windows = $1.5m \times 1m$

cost of white wishing the walls = 25 per sq. meter

area of wall=lateral surface area of wall

lateral surface area of wall = $[2(l+b)\times h]$

$$= [2(9+8) \times 6.5]$$
m³

$$=2 \times 17 \times 6.5$$

Area of wall = $221m^3$

Let area of wall which will be white wishing = x

x =area of wall – [area of door + area of windows]

area of door = $2 \times 1.5 = 3$ m²

area of windows = $1.5 \times 1 = 1.5 \text{m}^2$

but there are two windows then

$$= 1.5 \times 2$$

$$=3m^{2}$$

$$x = 221 - (3+3) = 215m^2$$

 \therefore per square meter cost = 25

 \therefore 216 square meter cost = 25 \times 215

$$=5375$$

Answer 10. Given,

Length of the wall = 15m

Width of wall = 30 cm = 0.3 m

Height of wall = 4m

Volume of wall = $l \times b \times h$

$$= 15 \times .3 \times 4 = 18.0 \text{ m}^3$$

Brick dimension = $22 \text{cm} \times 12.5 \text{cm} \times 7.5 \text{cm}$

Volume of brick = 2062.5 cm^3

 \rightarrow 1/12 of the total volume of the wall consist mortar

So, volume of mortar = $1/12 \times 18 = 1.5$ m³

Volume of wall which is made of brick = 18.15 = 16.5m³

Let total brick require = x

$$x = \frac{volume of wall}{volume of brick}$$

volume of brick = 2062.5cm³

$$=\frac{2062.5}{100\times100\times100}\text{m}^3$$

$$x = 16.5 / \frac{2062.5}{100 \times 100 \times 100} = 8000$$

Answer11. Given,

External dimension of box = $36 \text{cm} \times 25 \times 16.5 \text{cm}$

Total dimension of box = $(36-3) \times (25-3) \times (16.5-1.5)$

$$=33 \times 22 \times 15$$

Because box is 1.5cm throughout

Volume of external box = $36 \times 25 \times 16.5$

 $= 14850 \text{cm}^3$

Volume of internal box = $33 \times 22 \times 15$

 $= 10890 \text{cm}^3$

Volume of iron in box = 14850 - 10890

 $= 3960 \text{cm}^3$

 $: 1 \text{ cm}^3 \text{ of iron weighs} = 15 \text{gm}$

 \therefore 3960 cm³ of iron weighs is = 15 × 3960

= 59400 gm

: 1 kg = 1000 gm

 $\therefore 59400 \text{gm} = 59400/1000 = 59.4 \text{kg}$

Answer 12. Given

Sheet metal costs=6480

Per square meter cost = 120

Area of sheet metal = $\frac{totalcost}{costpersquaremeter}$

$$=\frac{6480}{120}$$
 sqmeter

Area of sheet metal $= 54m^2$

Length(l) = 5m

Breadth(b) = 3m

Height(h) = ?

Area of sheet metal = 2(lb+bh+hl)

$$54m^2 = 2(5 \times 3 + 3 \times h + 5 \times h)$$

$$54 = 2(15+3h+5h)$$

$$54=2(15+8h)$$

$$2\times8h=24$$

$$h = \frac{24}{16} = 1.5 m$$

Answer13. Given,

Volume of cuboid =1596m²

$$Length = 16m$$

Ratio of breadth & height = 3:2

Let

Breadth = b

Height = h

$$\Rightarrow \frac{b}{h} = \frac{3}{2}$$

$$b = \frac{3}{2}h$$

volume = $l \times b \times h$

putting the values

$$\Rightarrow 1536 = 16 \times \frac{3}{2} h \times h$$

$$\Rightarrow 1536 = 8 \times 3 \times h^2$$

$$\Rightarrow h^2 = \frac{1536}{8 \times 3} = 64$$

$$\Rightarrow h = \sqrt{64}$$

$$\Rightarrow$$
h = 8m

$$\Rightarrow$$
b = 3/2h

$$b = 1.5 \times 8$$

$$b = 12m$$

breadth = 12m

height = 8m

Answer14. Given,

Dining hall of dimension = $20m \times 16m \times 4.5m$

Volume of dining hall = 1440m²

One person require $5m^3$ of air

Total no. of person accommodate in hall = $\frac{volume of hall}{volume of aperson}$

$$=\frac{1440}{5}$$
 = 288 persons

Answer15. Given,

Length of classroom(l)=10m

Width of classroom (b)=6.4m

Height of classroom(h)=5m

Area of classroom floor = 10×6.4

 $= 64m^2$

One student require area = $1.6m^2$

No. of students in classroom = $\frac{64}{1.6}$ = 40

Volume of air = volume of classroom

 $= l \times b \times h$

 $=10 \times 6.4 \times 5$

 $=320m^{3}$

Require cubic meters of air for each student

$$= \frac{volume of air}{total students}$$

$$=\frac{320}{40}=8m^3$$

Answer16. Given,

Surface area of cuboid $= 758 \text{cm}^2$

Length of cuboid = 14cm

Breadth of cuboid = 11cm

Surface area of cuboid = 2(lb+bh+hl)

Let h be the height of cuboid

CLASS IX

RS Aggarwal solutions

$$\Rightarrow 758 = 2(14 \times 11 + 11 \times h + 14 \times h)$$

$$\Rightarrow$$
758=2(154+25h)

$$\Rightarrow$$
154+25h=379

$$\Rightarrow$$
25h=379-154

$$\Rightarrow$$
h= $\frac{225}{25}$ = 9cm

Height of cuboid is 9cm

Answer17. Given,

Height of rain falls (h) = 5cm

Area of ground = 2 hectares

$$: 1 \text{ hectares} = 10000 \text{m}^2$$

$$\therefore$$
 2 hectares = 20000m²

Volume of water falls on ground = $area \times depth$

$$\Rightarrow$$
2 × 10000 × $\frac{5}{100}$ = 2 × 100 × 5 = 1000

Volume of water = 1000m³

Answer 18. Given,

Edge measure of cube (a) = 9m

Volume of cube = a^3

Volume of cube = $9 \times 9 \times 9 = 729 \text{m}^3$

Lateral surface area of cube $= 4a^2$

CLASS IX

RS Aggarwal solutions

$$\Rightarrow 4 \times 9 \times 9$$

$$\Rightarrow 4 \times 81$$

$$\Rightarrow$$
 324m²

Total surface area of cube $= 6a^2$

$$=4\times9\times9$$

$$\Rightarrow$$
 6×81 = 486m²

A diagonal of a cube = $\sqrt{3}$ a

$$=\sqrt{3}\times9$$

$$= 1.79 \times 9 = 15.57$$
m.

Answer 19. Given,

Total surface area of cube = 1176cm^3

Total surface area of cube = $6a^2$

$$6a^2 = 1176$$

$$a^2 = \frac{1176}{6} = 196$$

$$\Rightarrow a = \sqrt{196} = 14$$

$$a = 14cm$$

volume of cube = a^3

$$=14\times14\times14$$

$$= 2744 \text{cm}^3$$

Answer 20. Given,

Lateral surface area of cube = 900cm^2

Lateral surface area of cube = $4a^2$

$$\Rightarrow$$
4a²=900

$$\Rightarrow a^2 = \frac{900}{4} = 225$$

$$\Rightarrow$$
 a = $\sqrt{225}$ = 15cm

volume of cube = a^3

$$\Rightarrow 15 \times 15 \times 15$$

$$\Rightarrow$$
 3375cm³

Answer 21. Given,

Volume of cube = 512 cm^3

$$a^3 = 512$$

$$a = 8 \text{ cm}$$

surface area of cube $= 6a^2$

$$= 6 \times 8 \times 8$$

$$=6 \times 64$$

$$= 384 \text{cm}^2$$

Answer 22. Given,

Size of cube =
$$3cm \times 4cm \times 5cm$$

Volume of cube which is form by these three = $(3^3 \times 4^3 \times 5^3)$ cm³

$$= 27 \times 64 \times 125$$

$$= 216 \text{cm}^3$$

Let side of new cube = a

CLASS IX

$$volume = a^3$$

$$216 = a^3$$

$$a = \sqrt{216} = 6cm$$

lateral surface area of new cube $= 4a^2$

$$=4\times6\times6$$

$$=144cm^{2}$$

Answer 23. Given,

Longest side in a cuboid = diagonal of cuboid

Diagonal of cuboid = $\sqrt{l^2+b^2+h^2}$

Given, l=10, b=10, h=5

Length of longest pole in room = $\sqrt{100 + 100 + 25}$

$$=\sqrt{225}$$

$$= 15 \text{ m}$$

Answer 24. Given,

$$\Rightarrow$$
l + b + h = 19cm....(1)

length of diagonal = 11cm

Diagonal of cuboid = $\sqrt{l^2+b^2+h^2}$

$$\sqrt{l^2+b^2+h^2} = 11$$

$$l^2+b^2+h^2=121$$
 -----(2)

do square of equation of (1)

$$\Rightarrow (l+b+h)2 = (19)2$$

$$l2 + b2 + h2 + 2(lb + bh + hl) = 361$$
 -----(3)

put the values in equation (3)

$$\Rightarrow 121 + 2(lb + bh + hl) = 361$$

$$\Rightarrow 2(lb + bh + hl) = 361 - 121$$

$$\Rightarrow$$
2(lb + bh + hl) = 240

Surface area of cuboid $= 240 \text{cm}^2$

Answer 25. Given,

Let edge of cube = a

Surface area of cube (a) = $6a^2$

edge is increased by 50% so,

new edge a' =
$$a + \frac{a \times 50}{100}$$

$$\Rightarrow a + \frac{a}{2} = \frac{3a}{2}$$

Surface area of new cube = $6 \times a^2$

$$a' = 6 \times (\frac{3a}{2})^2$$

$$a' = \frac{27}{2}a^2$$

percentage increase in surface are $=(\frac{a-a'}{a})\times 100$

$$= \frac{\left(\frac{27}{2}\right)a \times a - 6 \times a \times a}{6 \times a \times a} \times 100$$
$$= \frac{27a \times a + 2a \times a}{6 \times 2 \times a \times a} \times 100$$

Answer 26.

Volume of cuboid = V

Dimension of cuboid = a,b,c

Surface area = S

V=abc, S = 2(ab+bc+ca)

To be proven

$$\frac{1}{v} = \frac{2}{5} \left(\frac{1}{a} \times \frac{1}{b} \times \frac{1}{c} \right)$$

RHS =
$$\frac{2}{s} \left(\frac{1}{a} \times \frac{1}{b} \times \frac{1}{c} \right)$$

= $\frac{2}{2(ab+bc+ca)} \times \left(\frac{1}{a} \times \frac{1}{b} \times \frac{1}{c} \right)$
= $\frac{bc+ab+ca}{(ab+bc+ca)abc}$
= $\frac{1}{abc}$
= $\frac{1}{v}$ LHS

Answer 27 Given, canal dimension 30 dm wide and 12 dm deep, velocity 20km/hr.

Distance covered by in 30 min = velocity of water \times time

$$= \left(20000 \times \frac{30}{60}\right) m = 10000m$$

Volume of water flown in 30 min = $(l \times b \times h) = \left(10000 \times \frac{30}{10} \times \frac{12}{10}\right) m^3 = 36000 m^3$

Let the area irrigated be $x m^2$

Hence,
$$x \times \frac{9}{100} = 36000$$

$$\Rightarrow x = \left(36000 \times \frac{100}{9}\right) = 400000 m^2$$

Answer 28. dimension of cuboid = $9m \times 8m \times 2m$

Volume =
$$144m^3$$

Edge of cube
$$= a^3$$

$$=(2)^3$$

$$=8m^{3}$$

$$Total\ cube = \frac{volume of cubo id}{volume of one cube}$$

$$=\frac{144}{8}$$
 = 18 Cubes