EXERCISE7B

ANSWER1

Acc to question, AOB is straight line so,

$$180 - 62 = 118$$

X = 118

ANSWER2

The value of x can be calculated by,

$$180 = (3x-7) + 55 + (x+20)$$

$$180 = 4x + 68$$

$$4x = 180 - 68$$

$$4x = 112$$

$$x = \frac{112}{4} = 28$$

hence, the $\angle AOC = 3x-7 = 3 \text{ X } 28-7 = 77^{\circ}$ $\angle BOD = x+20 = 28+20 = 48^{\circ}$

ANSWER3

The value of X can be calculated by,

$$180 = (3x+7) + (2x-19) + x$$

$$180 = 6x-12$$

$$6x = 180 + 12$$

$$x = \frac{192}{6} = 32$$

Hence, the
$$\angle AOC = 3X + 7 = 3 \ X \ 32 + 7 = \ 103^{\circ}$$

the $\angle COD = 2x - 19 = 2 \ X \ 32 - 19 = 45^{\circ}$
 $\angle BOD = 32^{\circ}$

Answer4

$$x + y + z = 180$$

$$5t + 4t + 6t = 180$$

$$15t = 180$$

$$t = \frac{180}{15} = 12$$

Hence,
$$x=5 X 12=60$$

$$y = 4 X 12 = 48$$

$$z = 6 X 12 = 72$$

Answer5

let value of x be

$$180 = (3x + 20) + (4x - 36)$$

$$180 = 7x - 16$$

$$7x = 180 + 16$$

$$7x = 196$$

$$x = \frac{196}{7} = 28$$

Answer6

Given, $\angle AOC = 50^{\circ}$

Acc to vertical opposite angle , $\angle BOD = 50^{\circ}$

AB is straight line so,

$$180 - 50 = 130$$

Hence, ∠BOC=130°

And $\angle AOD = 130^{\circ}$

Answer7

Let on line AB we get value of x

$$180 = x + 50 + 90$$

$$180 = x + 140$$

$$x = 180 - 140$$

$$x = 40$$

Now, let on the line CD we get value of t,

$$180 = t + x + 50$$

$$180 = t + 40 + 50$$

$$180 = t + 90$$

$$t = 90$$

Now, on line EF we get the value of \boldsymbol{z}

$$180 = z + t + x$$

$$180 = z + 90 + 40$$

$$180 = z + 130$$

$$z = 50$$

So, the value of Y will be acc to vertically opposite y=40

Answer8

Acc to vertically opposite angles $\angle COE = \angle DOF = 5x$

So,

$$180 = 3x + 5x + 2x$$

$$180 = 10x$$

$$x = 18$$

So,
$$\angle$$
 AOD = 2x=2 X 18=36°
 \angle COE = 5x = 5 X 18=90°
 \angle AOE=3x = 3 X 18 = 54°

Answer9

Let the angle be x°

$$180 = 5x + 4x$$

$$180 = 9x$$

$$x = 20$$

Hence, the measuring angle be $5x=100^{\circ}$ and $4x=4 \times 20=80^{\circ}$

Answer 10

Given , if 2 straight lines intersect each other in a such a way that one of the angles formed measures 90°

Acc to right angle, others angles be also 90° because intersect at right angle given equal angles.

Answer11

Given, \angle BOC + \angle AOD = 280

Vertically opposite

So, $\angle BOD = \angle AOC$ (vertically opposite)

$$180 = 140 + AOC$$

$$AOC = 40$$

Answer12

Given \angle AOC : \angle AOD = 5:7 Let AOC= 5x and AOD = 7x

AOC+AOD=180

$$5x + 7x = 180$$

$$12x = 180$$

$$x = 15$$

So,
$$\angle AOC = 5x = 5 \text{ X } 15 = 75^{\circ}$$

 $\angle AOD = 7x = 7 \text{ X } 15 = 105^{\circ}$

As,

 $\angle AOC = \angle BOD = 75^{\circ}$ [vertically opposite angles]

 $\angle AOD = \angle BOC = 105^{\circ}$ [vertically opposite angles]

$$\angle AOD=105^{\circ}$$
 $\angle AOC=75^{\circ}$ $\angle BOC=105^{\circ}$ $\angle BOD=75^{\circ}$

Answer13.

Given, $\angle AOE=35^{\circ}$ and $\angle BOD=40^{\circ}$

$$\angle BOD = \angle AOC = 40^{\circ}$$
 [vertically opposite angles]

 $\angle AOE = \angle FOB = 35^{\circ}[vertically opposite angles]$

Sum of all angles on formed on upper side of AOB at point 0 is 180°

So,
$$\angle AOE + \angle EOD + \angle BOD = 180^{\circ}$$

$$35^{\circ} + \angle COF + 40^{\circ} = 180^{\circ}$$

$$\therefore \angle EOD = 180^{\circ} - 75^{\circ} = 105^{\circ}$$

 $\angle EOD = \angle COF = 105^{\circ}$ [vertically opposite angles]

Answer14.

Given $\angle BOC = 125^{\circ}$

 $\angle BOC = y^{\circ} = 125^{\circ}$ [vertically opposite angles]

Sum of all angles on line DOC is 180°

$$\angle DOB (z^{\circ}) + \angle BOC = 180$$

 $z^{\circ} = 180 - 125 = 55^{\circ}$
 $z^{\circ} = x^{\circ} = 55^{\circ}$ [vertically opposite angles]

Answer 15

Let the ray OM bisects ∠AOC and ray ON be opposite to OM Then, MON is a straight line

So, $\angle 1 = \angle 4$ [vertically opposite angles]

 $\angle 3 = \angle 2$ [vertically opposite angles]

 $\angle 1 = \angle 2 \Rightarrow \angle 3 = \angle 4$ [Adjacent angles]

Answer16.

Given, \angle DMN + ENM = 180°. OA and OB are bisectors of \angle DMN \angle ENM respectively.

 $\therefore \angle DMO + \angle OMN = 1/2 (\angle DMN)....(1)$

 $\Rightarrow \angle ENO + \angle ONM = 1/2 (\angle ENM)....(2)$

 \Rightarrow \angle DMN + \angle ENM = 180°

 \Rightarrow 2 (\angle 0MN) + 2 (\angle 0NM) = 180° [using (1) and (2)]

 \Rightarrow \angle OMN + \angle ONM = 90°

In Δ MNO.

 \angle OMN + \angle ONM + \angle MN0 = 180° (Angle Sum property)

 \Rightarrow 90° + \angle MNO = 180°

 $\Rightarrow \angle MNO = 180^{\circ} - 90^{\circ}$

 \Rightarrow \angle MNO = 90°

So, the bisectors of the two adjacent supplementary angles include a right angle. Hence proved.