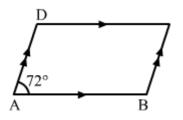
EXERCISE 10B

Answer 1:

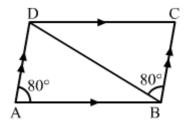


Given, ABCD is parallelogram and $\angle A = 72^{\circ}$.

Then, as we know that opposite angles are equals. $\therefore \angle A = \angle C$ and $\angle B = \angle D$ $\therefore \angle C = 72^{\circ}$ $\angle A$ and $\angle B$ are the adjacent angles. as, $\angle A + \angle B = 180^{\circ}$ $\Rightarrow \angle B = 180^{\circ} - \angle A = 180^{\circ} - 72^{\circ} = 108^{\circ}$

As above, $\angle B = \angle D = 108^{\circ}$ Hence, $\angle B = \angle D = 108^{\circ}$ and $\angle C = 72^{\circ}$

Answer 2:



Given: ABCD is parallelogram and $\angle DAB = 80^{\circ} \text{ and } \angle DBC = 60^{\circ}$ To find: Measure of $\angle CDB$ and $\angle ADB$ In parallelogram ABCD, AD || BC $\therefore \angle DBC = \angle ADB = 60^{\circ}$ (Alternate interior angles) ...(i) As $\angle DAB$ and $\angle ADC$ are the adjacent angles,

 $\angle DAB + \angle ADC = 180^{\circ}$

$$\therefore \angle ADC = 180^{\circ} - \angle DAB = 180^{\circ} - 80^{\circ} = 100^{\circ}$$

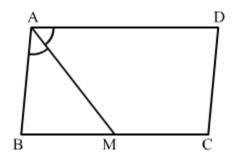
Also, $\angle ADC = \angle ADB + \angle CDB$
$$\therefore \angle ADC = 100^{\circ}$$

Then,
$$\Rightarrow \angle ADB + \angle CDB = 100 \qquad ...(ii)$$

From (i) and (ii),
 $60^{\circ} + \angle CDB = 100^{\circ}$
$$\Rightarrow \angle CDB = 100^{\circ} - 60^{\circ} = 40$$

Hence, $\angle CDB = 40^{\circ}$ and $\angle ADB = 60^{\circ}$

Answer 3:



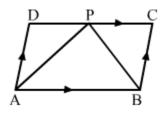
Given: parallelogram ABCD, M is the midpoint of side BC and $\angle BAM = \angle DAM$. To prove: AD = 2CD Proof: Since, AD||BC and AM is the transversal. So, $\angle DAM = \angle AMB$ (Alternate interior angles) But, $\angle DAM = \angle BAM$ (Given) Thus, $\angle AMB = \angle BAM$ $\Rightarrow AB = BM$

As we know angles opposite to equals sides are equal and opposite sides of parallelogram are equal Now, AB = CD $\Rightarrow 2AB = 2CD$

So, $\Rightarrow (AB + AB) = 2CD$ $\Rightarrow BM + MC = 2CD$ (AB = BM and MC = BM) $\Rightarrow BC = 2CD$

 $\therefore AD = 2CD$ (AD=BC)hence proved

Answer 4:



ABCD is a parallelogram. $\therefore \angle A = \angle C \text{ and } \angle B = \angle D \text{ (Opposite angles)}$ And $\angle A + \angle B = 180^{\circ}$ (Adjacent angles are supplementary) $\therefore \angle B = 180^{\circ} - \angle A$ $\Rightarrow 180^{\circ} - 60^{\circ} = 120^{\circ} \qquad (\angle A = 60^{\circ})$ $\therefore \angle A = \angle C = 60^{\circ} \text{ and } \angle B = \angle D = 120^{\circ}$ (i) In $\triangle APB$, $\angle PAB = \frac{60}{2} = 30^{\circ}$

and
$$\angle PBA = \frac{120}{2} = 60^{\circ}$$

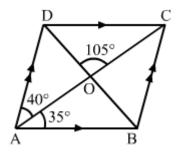
 $\therefore \angle APB = 180^{\circ} - (30^{\circ} + 60^{\circ}) = 90^{\circ}$

(ii) In \triangle ADP, \angle PAD = 30° and \angle ADP = 120° $\therefore \angle$ APB = 180° - (30° + 120°) = 30° Thus, \angle PAD = \angle APB = 30° Hence, \triangle ADP is an isosceles triangle and AD = DP. In \triangle PBC, \angle PBC= 60°, \angle BPC= 180° - (90° + 30°) = 60° and \angle BCP = 60° (Opposite angle of \angle A) $\therefore \angle$ PBC = \angle BPC = \angle BCP Hence, \triangle PBC is an equilateral triangle and, therefore, PB = PC = BC.

(iii) DC = DP + PC From (ii), as ,

DC = AD + BC $\Rightarrow DC = AD + AD$ $\Rightarrow DC = 2 AD$ [AD = BC, opposite sides of a parallelogram]

Answer 5:



ABCD is a parallelogram. \therefore AB | | DC and BC | | AD (i) In \triangle AOB, \angle BAO = 35°,

As we know that, vertically opposite angles are equals

 $\angle AOB = \angle COD = 105^{\circ}$ $\therefore \angle ABO = 180^{\circ} - (35^{\circ} + 105^{\circ}) = 40^{\circ}$

(ii) As we know that these angles are $\angle ODC$ and $\angle ABO$ are alternate interior angles. $\therefore \angle ODC = \angle ABO = 40^{\circ}$

(iii) These are Alternate interior angles

 $\angle ACB = \angle CAD = 40^{\circ}$ (iv) In $\triangle ABC$, we get

 $\angle CBD = \angle ABC - \angle ABD$...(i)

 $\angle ABC = 180^{\circ} - \angle BAD$ (Adjacent angles are supplementary)

CLASS IX

$$\Rightarrow \angle ABC = 180^{\circ} - 75^{\circ} = 105^{\circ}$$

In $\triangle CBD$, we have
Then, $\angle CBD = \angle ABC - \angle ABD$
$$\Rightarrow \angle CBD = 105^{\circ} - \angle ABD \qquad (\angle ABD = \angle ABO)$$
$$\Rightarrow \angle CBD = 105^{\circ} - 40^{\circ} = 65^{\circ}$$

Answer 6:

ABCD is a parallelogram. i.e., $\angle A = \angle C$ and $\angle B = \angle D$ (Opposite angles) Also, $\angle A + \angle B = 180^{\circ}$ (Adjacent angles are supplementary) $\therefore (2x + 25)^{\circ} + (3x - 5)^{\circ} = 180^{\circ}$ $\Rightarrow 5x + 20 = 180^{\circ}$ $\Rightarrow 5x = 180 - 20$ $\Rightarrow 5x = 160^{\circ}$ $\Rightarrow x = \frac{160}{2} = 32^{\circ}$

 $\therefore \angle A = 2 \times 32 + 25 = 89^{\circ} \text{ and } \angle B = 3 \times 32 - 5 = 91^{\circ}$ Hence, x = 32°, $\angle A = \angle C = 89^{\circ} \text{ and } \angle B = \angle D = 91^{\circ}$

Answer 7:

Let PQRS be a parallelogram. $\therefore \angle P = \angle R \text{ and } \angle Q = \angle S$ Let $\angle P = y^{\circ} \text{ and } \angle B = (\frac{4y}{5})^{\circ}$ Now, $\angle P + \angle Q = 180^{\circ}$ $\Rightarrow y + (\frac{4y}{5})^{\circ} = 180^{\circ} \Rightarrow (\frac{9y}{5})^{\circ} = 180^{\circ} \Rightarrow y = 100^{\circ}$

Now, $\angle P = 100^\circ$ and $\angle B = (\frac{4}{5}) \times 100^\circ = 80^\circ$ Hence, $\angle P = \angle R = 100^\circ$; $\angle B = \angle S = 80^\circ$

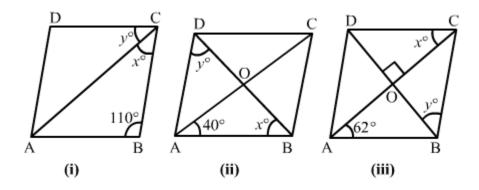
Answer 8:

Let PQRS be a parallelogram. $\therefore \angle P = \angle R \text{ and } \angle Q = \angle S$ (Opposite angles) Let $\angle P$ be the smallest angle whose measure is y°. $\therefore \angle Q = (2y - 30)^{\circ}$ Now, $\angle P + \angle Q = 180^{\circ}$ (Adjacent angles are supplementry) $\Rightarrow y + 2y - 30^{\circ} = 180^{\circ}$ $\Rightarrow 3y = 210^{\circ}$ $\Rightarrow y = \frac{210}{3} = 70$ $\Rightarrow y = 70^{\circ}$ $\therefore \angle Q = 2 \times 70^{\circ} - 30^{\circ} = 110^{\circ}$

Hence,
$$\angle P = \angle R = 70^{\circ}$$
; $\angle Q = \angle S = 110^{\circ}$

Answer 9:

ABCD is a parallelogram. The opposite sides of a parallelogram are parallel and equal. $\therefore AB = DC = 9.5 \text{ cm}$ Let BC = AD = y \therefore Perimeter of ABCD = AB + BC + CD + DA = 30 cm $\Rightarrow 9.5 + y + 9.5 + y = 30$ $\Rightarrow 19 + 2y = 30$ $\Rightarrow 2y = 11$ $\Rightarrow y = \frac{11}{2} = 5.5 \text{ cm}$ Hence, AB = DC = 9.5 cm and BC = DA = 5.5 cm Answer 10:



ABCD is a rhombus and a rhombus is also a parallelogram. A rhombus has four equal sides.

(i) In \triangle ABC,

 $\angle BAC = \angle BCA = \frac{1}{2}(180 - 110)^{\circ} = 35^{\circ}$ i.e., x = 35° Now by Adjacent angles are supplementary we get,

$$\angle B + \angle C = 180^{\circ}$$

As, $\angle C = x + y = 70^{\circ}$ $\Rightarrow y = 70^{\circ} - x$ $\Rightarrow y = 70^{\circ} - 35^{\circ} = 35^{\circ}$ Hence, $x = 35^{\circ}$; $y = 35^{\circ}$

(ii) The diagonals of a rhombus are perpendicular bisectors of each other. So, in $\triangle AOB$, $\angle OAB = 40^{\circ}$, $\angle AOB = 90^{\circ}$ and

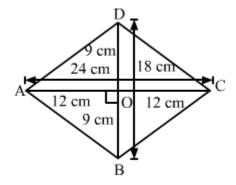
 $\angle ABO + \angle BOA + \angle OAB = 180$

 $\angle ABO = 180^{\circ} - (40^{\circ} + 90^{\circ}) = 50^{\circ}$ $\therefore x = 50^{\circ}$ In $\triangle ABD$, AB = ADSo, $\angle ABD = \angle ADB = 50^{\circ}$ Hence, $x = 50^{\circ}$; $y = 50^{\circ}$

(iii) $\angle BAC = \angle DCA$ (Alternate interior angles) i.e., $x = 62^{\circ}$ In $\triangle BOC$, $\angle BCO = 62^{\circ}$ Also, $\angle BOC = 90^{\circ}$ $\angle BCO + \angle BOC + \angle OBC = 180$

 $\therefore \angle OBC = 180^{\circ} - (90^{\circ} + 62^{\circ}) = 28^{\circ}$ Hence, x = 62°; y = 28°

Answer 11:



Let PQRS be a rhombus.

 $\therefore PQ = QR = RS = SP$

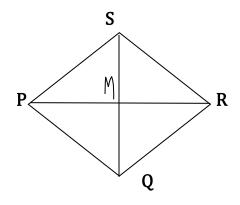
Here, PR and QS are the diagonals of PQRS, where PR = 24 cm and QS = 18 cm.

Let the diagonals intersect each other at M.

 $\therefore \Delta PMQ \text{ is a right angle triangle in which } MP = \frac{AC}{2} = \frac{24}{2} = 12 \text{ cm and } MQ = \frac{QS}{2} = \frac{18}{2} = 9 \text{ cm.}$ Now, $PQ^2 = MP^2 + MQ^2$ [Pythagoras theorem] $\Rightarrow PQ^2 = (12)^2 + (9)^2$ $\Rightarrow PQ^2 = 144 + 81 = 225$ $\Rightarrow PQ = 15 \text{ cm}$

Hence, the side of the rhombus is 15 cm.

Answer 12:



Let PQRS be a rhombus. \therefore PQ = QR = RS = SP = 10 cm Let PR and QS are the diagonals of PQRS. Let PR = y and QS = 16 cm and M be the intersection point of the diagonals. $\therefore \Delta$ PMQ is a right angle triangle, in which

$$MP = \frac{PR}{2} = \frac{y}{2} \text{ and } MQ = \frac{QS}{2} = \frac{16}{2} = 8 \text{ cm.}$$

Now, $PQ^2 = MP^2 + MQ^2$ [Pythagoras theorem]

$$\Rightarrow 10^2 = (\frac{y}{2})^2 + 8^2 \Rightarrow 100 - 64 = \frac{y^2}{4} \Rightarrow 36 \times 4 = y^2$$

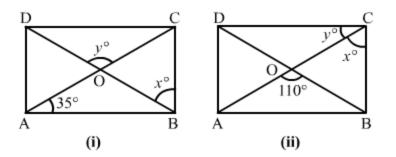
$$\Rightarrow y^2 = 144$$

$$\therefore y = 12 \text{ cm}$$

Hence, the other diagonal of the rhombus is 12 cm.

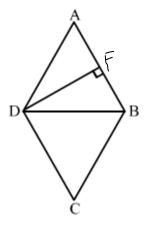
$$\therefore \text{ Area of the rhombus} = 12 \times (12 \times 16) = 96 \text{ cm}^2$$

Answer 13:



(i) ABCD is a rectangle. The diagonals of a rectangle are congruent and bisect each other. Therefore, in Δ AOB, as, OA = OB $\therefore \angle OAB = \angle OBA = 35^{\circ}$ $x = 90^{\circ} - 35^{\circ} = 55^{\circ}$ In $\triangle AOB$ $\angle OAB + \angle OBA + \angle AOB = 180\circ$ And $\angle AOB = 180^{\circ} - (35^{\circ} + 35^{\circ}) = 110^{\circ}$ \therefore y = $\angle AOB = 110^{\circ}$ [Vertically opposite angles] Hence, $x = 55^{\circ}$ and $y = 110^{\circ}$ (ii) In $\triangle AOB$, as, Given, $\angle AOB = 100^{\circ}$ OA = OBAs, $\angle OAB = \angle OBA$ Then, $\angle AOB + \angle OBA + \angle OAB = 180$ $\Rightarrow 2 \angle AOB = 180 - \angle AOB \dots (\angle OAB = \angle OBA)$ $\Rightarrow 2 \angle AOB = 180 - 110 = 70^{\circ}$ $\Rightarrow \angle AOB = \frac{1}{2} \times 70 = 35^{\circ}$ so, \therefore y = \angle BAC = 35° [Interior alternate angles] Here at $\angle C$ is at right angle Δ by fig, $\Rightarrow 90^{\circ} = x + y$ $\Rightarrow x = 90^{\circ} - y$ \Rightarrow x = 90° - 35° = 55° Thus, $x = 55^{\circ}$ and $y = 35^{\circ}$

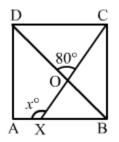
Answer 14:



Given: ABCD is a rhombus, DF is altitude which bisects AB i.e. AF = FB In ΔAFD and ΔBFD ,

DF = DF(Common side) (Given) ∠DFA=∠DFB=90° AF=FB (Given) (By SAS congruence Criteria) ∴ ∆AFD≅∆BFD \Rightarrow AD=BD (CPCT) (Sides of rhombus are equal) Also, AD = AB \Rightarrow AD=AB=BD Thus, $\triangle ABD$ is an equilateral triangle. Therefore, $\angle A = 60^{\circ}$ $\Rightarrow \angle C = \angle A = 60^{\circ}$ (Opposite angles of rhombus are equal) (Adjacent angles of rhombus are And, $\angle ABC + \angle BCD = 180^{\circ}$ supplementary.) $\Rightarrow \angle ABC + 60^{\circ} = 180^{\circ} \Rightarrow \angle ABC = 180^{\circ} - 60^{\circ} \Rightarrow \angle ABC = 120^{\circ} \Rightarrow \angle ADC = \angle ABC = 120^{\circ}$ Hence, the angles of rhombus are 60° , 120° , 60° and 120°

Answer 15:



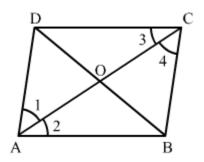
The angles of a square are bisected by the diagonals.

$$\angle OBX = \frac{1}{2} \times \angle CBA = \frac{1}{2} \times 90 = 45^{\circ}$$

 $\therefore \angle OBX = 45^{\circ}$
Given, $\angle COD = 80^{\circ}$

And $\angle BOX = \angle COD = 80^{\circ}$ [Vertically opposite angles] \therefore In $\triangle BOX$, as we know that exterior angle is sum of both interior angles. $\angle AXO = \angle OBX + \angle BOX$ $\Rightarrow \angle AXO = 45^{\circ} + 80^{\circ} = 125^{\circ}$ $\therefore x = 125^{\circ}$

Answer 16:



Given: A rhombus ABCD.

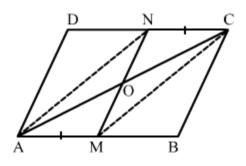
To prove: Diagonal AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$.

Proof:

CLASS IX

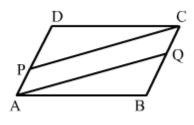
In $\triangle ABC$, AB = BC(Sides of rhombus are equal.) $\angle ACB = \angle CAB$ (Angles opposite to equal sides are equal.) ...(1) (Opposite sides of rhombus are parallel.) AD||BC AC is transversal. $\angle DAC = \angle ACB$ (Alternate interior angles) ...(2) From (1) and (2), $\angle DAC = \angle CAB$ Thus, AC bisects $\angle A$. As, AB DC and AC is transversal. $\angle CAB = \angle DCA$ (Alternate interior angles) ...(3) From (1) and (3), $\angle ACB = \angle DCA$ Thus, AC bisects $\angle C$. Thus, AC bisects $\angle C$ and $\angle A$ In ΔDAB . AD = AB(Sides of rhombus are equal.) (Angles opposite to equal sides are equal.) ...(4) $\angle ADB = \angle ABD$ Also, (Opposite sides of rhombus are parallel.) DCIIAB BD is transversal. $\angle CDB = \angle DBA$ (Alternate interior angles) ...(5) From (4) and (5), $\angle ADB = \angle CDB$ Therefore. DB bisects $\angle D$. As, AD||BC and BD is transversal. $\angle CBD = \angle ADB$ (Alternate interior angles) ...(6) From (4) and (6) $\angle CBD = \angle ABD$ Therefore, BD bisects $\angle B$. Thus, BD bisects $\angle D$ and $\angle B$.

Answer 17:



Given: In a parallelogram ABCD, AM = CN. To prove: AC and MN bisect each other. Construction: Join AN and MC. Proof: As, ABCD is a parallelogram. $\Rightarrow AB \parallel DC \Rightarrow AM \parallel NC$ And, AM = CN (Given) Therefore, AMCN is a parallelogram. As, the diagonals of a parallelogram bisect each other. Thus, AC and MN also bisect each other.

Answer 18:



As , per by given fig, $\angle B = \angle D$ [Opposite angles of parallelogram ABCD] AD = BC and AB = DC [Opposite sides of parallelogram ABCD] Also, AD || BC and AB|| DC

Given, $AP = \frac{1}{3}AD$ and $CQ = \frac{1}{3}BC$

So, we get

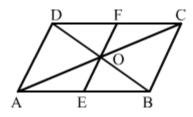
$$\therefore AP = CQ$$
 [AD = BC]

In \triangle DPC and \triangle BQA, $AB = CD, \angle B = \angle D \text{ and } DP = QB$ i.e., $\triangle DPC \cong \triangle BQA$ $\therefore PC = QA$

$$[DP = \frac{2}{3}AD \text{ and } QB = \frac{2}{3}BC]$$

Thus, in quadrilateral AQCP, AP = CQ...(i) PC = QA...(ii) \therefore AQCP is a parallelogram.

Answer 19:



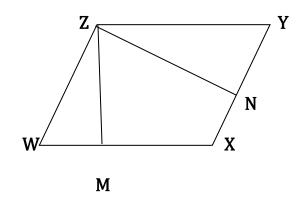
Given, ABCD is a parallelogram whose diagonals intersect each other at O. A line segment EOF is drawn to meet AB at E and DC at F.

So in $\triangle ODF$ and $\triangle OBE$, OD = OB(Diagonals bisects each other) $\angle DOF = \angle BOE$ $\angle FDO = \angle OBE$

(Vertically opposite angles) (Alternate interior angles)

By parallelogram theorem $\triangle ODF \cong \triangle OBE$ $\therefore OF = OE$ Hence, proved.

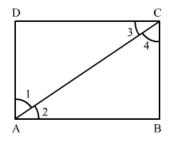
Answer 20:



Given: \therefore parallelogram WXYZ, ZM \perp WX, WN \perp XY and \angle MZN = 60° In quadrilateral ZMXN, by angle sum property, $\angle MZN + \angle ZMX + \angle X + \angle XNZ = 360^{\circ}$

 $\Rightarrow 60^{\circ} + 90^{\circ} + \angle X + 90^{\circ} = 360^{\circ}$

 $\Rightarrow \angle X = 360^{\circ} - 240^{\circ} \Rightarrow \angle X = 120^{\circ} \Rightarrow \angle X = 120^{\circ}$ Also, $\angle X = \angle Z = 120^{\circ}$ (Opposite angles of a parallelogram are equal.) $\angle W + \angle X = 180^{\circ}$ (Adjacent angles of a parallelogram are supplementary.) $\Rightarrow \angle W + 120^{\circ} = 180^{\circ} \Rightarrow \angle W = 180^{\circ} - 120^{\circ} \Rightarrow \angle W = 60^{\circ}$ Also, $\angle W = \angle Y = 60^{\circ}$ (Opposite angles of a parallelogram are equal.) Thus, the angles of a parallelogram are 60^{\circ}, 120^{\circ}, 60^{\circ} and 120^{\circ}.

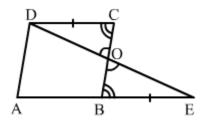


Given: In rectangle ABCD, AC bisects $\angle A$, i.e. $\angle DAC = \angle CAB$ and AC bisects $\angle C$, i.e. ∠D $CA = \angle ACB.$ To prove: (i) ABCD is a square, (ii) diagonal BD bisects $\angle B$ as well as $\angle D$. **Proof:** (Opposite sides of a rectangle are parallel.) (i) Since, AD||BC So, ∠DAC=∠ACB (Alternate interior angles) But, $\angle DAC = \angle CAB$ (Given) So, $\angle CAB = \angle ACB$ In $\triangle ABC$, Since, $\angle CAB = \angle ACB$ So, BC = AB(Sides opposite to equal angles are equal.) But these are adjacent sides of the rectangle ABCD.

Hence, ABCD is a square.

(ii) Since, the diagonals of a square bisects its angles. So, diagonals BD bisects $\angle B$ as well as $\angle D$.

Answer 22:



Given, ABCD is parallelogram in which AB is produced to E.

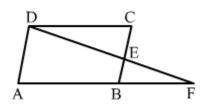
So in $\triangle ODC$ and $\triangle OEB$, as, DC = BE (DC = AB)

CLASS IX

BE = AB (given)

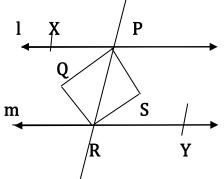
 $\angle OCD = \angle OBE$ (Alternate interior angles) $\angle COD = \angle BOE$ (Vertically opposite angles) by parallelogram theorem we get, $\therefore \Delta ODC \cong \Delta OEB$ $\Rightarrow OC = OB$ Hence , ED bisects BC.

Answer 23:



Given: ABCD is a parallelogram. BE = CEDE and AB when produced meet at F. To prove: AF = 2AB**Proof:** In parallelogram ABCD, as, *AB* || *DC* $\angle DCE = \angle EBF$ (Alternate interior angles) In \triangle DCE and \triangle BFE, (Proved above) $\angle DCE = \angle EBF$ $\angle DEC = \angle BEF$ (Vertically opposite angles) And, BE = CE(Given) By parallelogram theorem $\therefore \Delta DCE \cong \Delta BFE$ hence $\therefore DC = BF$ But DC = AB, as ABCD is a parallelogram. $\therefore DC = AB = BF$...(i) can also be written as , AF = AB + BF...(ii) AF = AB + AB = 2ABfrom(i) Hence, proved. AF = 2AB.

Answer 24:



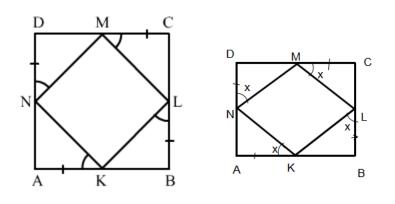
Given: I || m and the bisectors of interior angles intersect at X and Y. To prove: PQRS is a rectangle.

Proof:

Since, | | | m (Given) So, $\angle XPR = \angle PRY$ (Alternate interior angles) $\Rightarrow \frac{1}{2} \angle XPR = \frac{1}{2} \angle PRY$ $\Rightarrow \angle QPR = \angle PRS$ but, these are a pair of alternate interior angles for PQ and RS. $\Rightarrow PQ \|SR$ Similarly, PR \|QS So, PQRS is a parallelogram. Also,' $\angle XPR + \angle RPZ = 180^{\circ}$ (Linear pair) $\Rightarrow \frac{1}{2} \angle XPR + \frac{1}{2} \angle PRY = 90^{\circ} \Rightarrow \angle QPR + \angle RPS = 90^{\circ} \Rightarrow \angle QPS = 90^{\circ}$

But, this an angle of the parallelogram PQRS Hence, PQRS is a rectangle.

Answer 25:

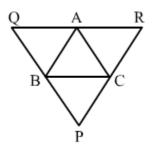


CLASS IX

Given: In square ABCD, AK = BL = CM = DN. To prove: KLMN is a square. Proof: In square ABCD, AB = BC = CD = DA (All sides of a square are equal.) And, AK = BL = CM = DN (Given) So, AB - AK = BC - BL = CD - CM = DA - DN $\Rightarrow KB = CL = DM = AN$...(1) In Δ NAK and Δ KBL, $\angle NAK = \angle KBL = 90^{\circ}$ (Each angle of a square is a right angle.) AK = BL(Given) AN = KB[From (1)] So, by parallelogram theorem, $\Delta NAK \cong \Delta KBL$ $\Rightarrow NK = KL$ (CPCT) ...(2) Similarly, $\Delta MDN \cong \Delta NAK \Delta DNM \cong CML\Delta MCL \cong LBK$ $\Rightarrow MN = NK \text{ and } \angle DNM = \angle KNA$ (CPCT) ...(3) (CPCT) $MN = IM \text{ and } \angle DNM = \angle CML$...(4) $ML = LK and \angle CML = \angle BLK$ (CPCT) ...(5) From (2), (3), (4) and (5), NK = KL = MN = ML...(6) And, $\angle DNM = \angle AKN = \angle KLB = LMC$ Now, In ΔNAK , $\angle NAK = 90^{\circ}$ Let $\angle AKN = v^{\circ}$ So, $\angle DNK = 90^{\circ} + v^{\circ}$ $\Rightarrow \angle DNM + \angle MNK = 90^{\circ} + y^{\circ} \Rightarrow y^{\circ} + \angle MNK = 90^{\circ} + y^{\circ} \Rightarrow \angle MNK = 90^{\circ}$ Similarly, $\angle NKL = \angle KLM = \angle LMN = 90^{\circ}$...(7) Using (6) and (7), All sides of quadrilateral KLMN are equal and all angles are 90°

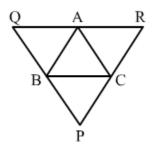
So, KLMN is a square.

Answer 26:



 $\Delta ABC , if lines are drawn through A, B, C parallel respectively to the sides BC, CA and AB. So, we get, BC || QA and CA || QB$ i.e., BCQA is a parallelogram. $<math display="block">\therefore BC = QA \qquad ...(i)$ Similarly, BC || AR and AB || CR. i.e., BCRA is a parallelogram. $\therefore BC = AR \qquad ...(ii)$ As QR = QA + ARFrom (i) and (ii), QR = BC + BC $\Rightarrow QR = 2BC$ $\therefore BC = \frac{1}{2}QR$

Answer 27:



In \triangle ABC A, B, C lines drawn, parallel respectively to BC, CA and AB intersecting at P , Q and R. Acc to question,

Perimeter of $\triangle ABC = AB + BC + CA$...(i)Perimeter of $\triangle PQR = PQ + QR + PR$...(ii)By given figure,...(ii)

CLASS IX

BC || QA and CA || QB i.e., BCQA is a parallelogram. $\therefore BC = QA$...(iii) Similarly, BC || AR and AB || CR i.e., BCRA is a parallelogram. $\therefore BC = AR$...(iv) But, QR = QA + ARFrom (iii) and (iv), $\Rightarrow QR = BC + BC$ $\Rightarrow QR = 2BC$ \therefore BC = $\frac{1}{2}$ QR Similarly, $CA = \frac{1}{2}PQ$ and $AB = \frac{1}{2}PR$ From (i) and (ii), Perimeter of $\triangle ABC = \frac{1}{2}QR + \frac{1}{2}PQ + \frac{1}{2}PR$ $=\frac{1}{2}(PR + QR + PQ)$ i.e., Perimeter of $\triangle ABC = \frac{1}{2}$ (Perimeter of $\triangle PQR$) \therefore Perimeter of $\triangle PQR = 2 \times$ Perimeter of $\triangle ABC$