QUADRILATERALS - CHAPTER 10

EXERCISE 10A

Answer 1:

Given: Three angles of a quadrilateral are 75°, 90° and 75°. Let the fourth angle be y. Using angle sum property of quadrilateral, $75^{\circ}+90^{\circ}+75^{\circ}+y=360^{\circ}$

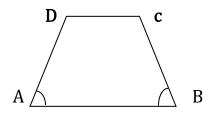
⇒240°+y=360°

⇒y=360°-240°

 \Rightarrow y=120° So, the measure of the fourth angle is 120°

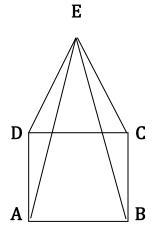
Answer 2:

Let $\angle A = 2y^{\circ}$. Then $\angle B = (4y)^{\circ}$; $\angle C = (5y)^{\circ}$ and $\angle D = (7y)^{\circ}$ Since the sum of the angles of a quadrilateral is 360°, as , $2y + 4y + 5y + 7y = 360^{\circ}$ $\Rightarrow 18 y = 360^{\circ}$ $\Rightarrow y = 20^{\circ}$ $\therefore \angle A = 40^{\circ}$; $\angle B = 80^{\circ}$; $\angle C = 100^{\circ}$; $\angle D = 140^{\circ}$ Answer 3:



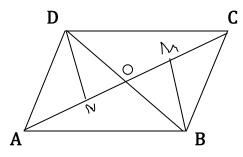
Given , AB || DC. As we know that the interior angles on the same side of transversal line, then $\angle A = 55^{\circ}$ and $\angle B = 70^{\circ}$ $\angle A + \angle D = 180^{\circ}$ $\Rightarrow \angle D = 180^{\circ} - \angle A = 180^{\circ} - 55^{\circ} = 125^{\circ}$ Also , $\angle B + \angle C = 180^{\circ}$ $\Rightarrow \angle C = 180^{\circ} - \angle B = 180^{\circ} - 70^{\circ} = 110^{\circ}$

Answer 4:



Given: ABCD is a square in which AB = BC = CD = DA. $\triangle EDC$ is an equilateral triangle in which ED = EC = DC and $\angle EDC = \angle DEC = \angle DCE = 60^{\circ}$. To prove: AE = BE and $\angle DAE = 15^{\circ}$ Proof: In \triangle ADE and \triangle BCE, as , [Sides of a square] AD = BCDE = EC[Sides of an equilateral triangle] $\angle ADE = \angle BCE = 90^{\circ} + 60^{\circ} = 150^{\circ}$ $\therefore \Delta ADE \cong \Delta BCE$ i.e., AE = BENow, $\angle ADE = 150^{\circ}$ DA = DC [Sides of a square] [Sides of an equilateral triangle] DC = DESo, DA = DE Δ ADE and Δ BCE are isosceles triangles. i.e., $\angle DAE = \angle DEA = \frac{1}{2}(180^{\circ} - 150^{\circ}) = \frac{30}{2} = 15^{\circ}$

Answer 5:

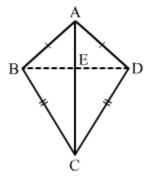


Given: by fig , both the diagonals intersect at O and BM \perp AC then Let the diagonals intersect each other at O Now, in \triangle OND and \triangle OMB, \angle OND = \angle OMB (90° each) \angle DON = \angle BOM (Vertically opposite angles)

Also, DN = BM (Given) As we know that by parallelogram

 $\Delta OND \cong \Delta OMB$ $\therefore OD = OB$ HENCE PROVED Hence, AC bisects BD.

Answer 6:



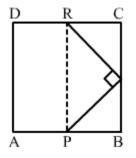
Given: ABCD is a quadrilateral in which AB = AD and BC = DC(i) To prove : AC bisects $\angle A$ and $\angle C$

In \triangle ABC and \triangle ADC, AB = ADBC = DCAC is common in both the traiangles. i.e., $\triangle ABC \cong \triangle ADC$ (SSS congruence rule) $\therefore \angle BAC = \angle DAC$ and $\angle BCA = \angle DCA$ (By CPCT) Hence proved, AC bisects both the angles, $\angle A$ and $\angle C$. (ii) To prove BE = DEIn $\triangle ABE$ and $\triangle ADE$, AB = AD $S \angle BAE = \angle DAE$ AE is common. $\therefore \Delta ABE \cong \Delta ADE$ (SAS congruence rule) \Rightarrow hence proved BE = DE (iii) To prove : $\angle ABC = \angle ADC$

CLASS IX

 $\Delta ABC \cong \Delta ADC \qquad (Given)$ Hence proved, $\angle ABC = \angle ADC$

Answer 7:



Given: ABCD is a square and $\angle PQR = 90^{\circ}$. PB = QC = DR(i) To prove : QB = DR \therefore BC = CD (Sides of square) and CQ = DR(Given) so, by fig BC = BQ + CQ \Rightarrow CQ = BC - BQ \therefore DR = BC - BQ ...(i) Also, CD = RC + DR...(ii) \therefore DR = CD - RC = BC - RC From (i) and (ii), we get BC - BQ = BC - RC \therefore BQ = RC

(ii)To prove, PQ = QR

In \triangle RCQ and \triangle QBP, PB = QC (Given) BQ = RC (Given) \angle RCQ = \angle QBP (90° each)

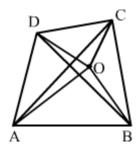
By parallelogram theorem $\Delta RCQ \cong \Delta QBP$ (SAS congruence rule) $\therefore QR = PQ$ hence proved

(iii) To prove,
$$\angle QPR = 45^{\circ}$$

 $\triangle RCQ \cong \triangle QBP \text{ and } QR = PQ$
 $\therefore \text{ In } \triangle RPQ, \angle QPR = \angle QRP = \frac{1}{2}(180^{\circ} - 90^{\circ}) = \frac{90}{2} = 45^{\circ}$

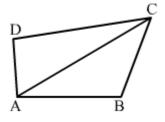
Hence proved, $\angle QPR = 45^{\circ}$

Answer 8:



Let ABCD be a quadrilateral with diagonals AC and BD and O is a point within the quadrilateral.

Suppose In $\triangle AOC$, OA + OC > AC.....(1) And, in $\triangle BOD$, OB + OD > BD.....(2) Adding these, (OA + OC) + (OB + OD) > (AC + BD) $\Rightarrow OA + OB + OC + OD > AC + BD$ Answer 9:

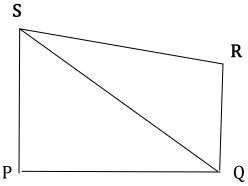


Given: ABCD is a quadrilateral and AC is its diagonal.

(i) As sum of any two sides of any triangle is greater than the third side. In $\triangle ABC$, AB + BC > AC...(1) In $\triangle ACD$, CD + DA > AC ...(2) Adding (1) and (2), AB + BC + CD + DA > 2AChence proved (ii) In \triangle ABC, AB + BC > AC ...(1) In $\triangle ACD$, AC > |DA - CD| ...(2) From (1) and (2), AB + BC > |DA - CD| \Rightarrow AB + BC + CD > DA....hence proved (iii) In \triangle ABC, we know that AB + BC > AC Same as, In \triangle ACD, CD + DA > AC And In Δ BCD, BC + CD > BDIn \triangle ABD, DA + AB > BDAdding these, 2(AB + BC + CD + DA) > 2(AC + BD) \Rightarrow (AB + BC + CD + DA) > (AC + BD)

CLASS IX

Answer 10:



Let PQRS be a quadrilateral and $\angle 1$, $\angle 2$, $\angle 3$ and $\angle 4$ are its four angles . Join QR which divides PQRS in two triangles, \triangle PQR and \triangle QRS. In \triangle PQR,

 $\angle 1 + \angle 2 + \angle P = 180^{\circ}$...(i) In $\triangle QRS$, $\angle 3 + \angle 4 + \angle R = 180^{\circ}$...(ii) On adding (i) and (ii),

 $(\angle 1 + \angle 3) + \angle P + \angle R + (\angle 4 + \angle 2) = 360^{\circ}$ $\Rightarrow \angle P + \angle R + \angle Q + \angle S = 360^{\circ} \quad \therefore \ \angle 1 + \angle 3 = \angle Q; \ \angle 4 + \angle 2 = \angle S$ Hence proved $\therefore \angle P + \angle R + \angle Q + \angle S = 360^{\circ}$

CLASS IX