Exercise - 3D

1. Show that the following system of equations has a unique solution:
$3 x+5 y=12$,
$5 x+3 y=4$.
Also, find the solution of the given system of equations.
Sol:
The given system of equations is:

$$
\begin{aligned}
& 3 x+5 y=12 \\
& 5 x+3 y=4
\end{aligned}
$$

These equations are of the forms:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=3, b_{1}=5, c_{1}=-12$ and $a_{2}=5, b_{2}=3, c_{2}=-4$
For a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$, i.e., $\frac{3}{5} \neq \frac{5}{3}$
Hence, the given system of equations has a unique solution.
Again, the given equations are:

$$
\begin{equation*}
3 x+5 y=12 \tag{i}
\end{equation*}
$$

$5 x+3 y=4$
On multiplying (i) by 3 and (ii) by 5, we get:
$9 x+15 y=36$
$25 x+15 y=20$
On subtracting (iii) from (iv), we get:
$16 x=-16$
$\Rightarrow x=-1$
On substituting $x=-1$ in (i), we get:
$3(-1)+5 y=12$
$\Rightarrow 5 y=(12+3)=15$
$\Rightarrow y=3$
Hence, $x=-1$ and $y=3$ is the required solution.
2. Show that the following system of equations has a unique solution:
$2 x-3 y=17$,
$4 \mathrm{x}+\mathrm{y}=13$.
Also, find the solution of the given system of equations.

Sol:

The given system of equations is:
$2 \mathrm{x}-3 \mathrm{y}-17=0$
$4 x+y-13=0$
The given equations are of the form
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=2, b_{1}=-3, c_{1}=-17$ and $a_{2}=4, b_{2}=1, c_{2}=-13$
Now,
$\frac{a_{1}}{a_{2}}=\frac{2}{4}=\frac{1}{2}$ and $\frac{b_{1}}{b_{2}}=\frac{-3}{1}=-3$
Since, $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$, therefore the system of equations has unique solution.
Using cross multiplication method, we have
$\frac{x}{b_{1} c_{2}-b_{2} c_{1}}=\frac{y}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}}$
$\Rightarrow \frac{x}{-3(-13)-1 \times(-17)}=\frac{y}{-17 \times 4-(-13) \times 2}=\frac{1}{2 \times 1-4 \times(-3)}$
$\Rightarrow \frac{x}{39+17}=\frac{y}{-68+26}=\frac{1}{2+12}$
$\Rightarrow \frac{x}{56}=\frac{y}{-42}=\frac{1}{14}$
$\Rightarrow \mathrm{x}=\frac{56}{14}, \mathrm{y}=\frac{-42}{14}$
$\Rightarrow \mathrm{x}=4, \mathrm{y}=-3$
Hence, $x=4$ and $y=-3$.
3. Show that the following system of equations has a unique solution:
$\frac{x}{3}+\frac{y}{2}=3, \mathrm{x}-2 \mathrm{y}=2$.
Also, find the solution of the given system of equations.

Sol:

The given system of equations is:
$\frac{x}{3}+\frac{y}{2}=3$
$\Rightarrow \frac{2 x+3 y}{6}=3$
$2 x+3 y=18$
$\Rightarrow 2 \mathrm{x}+3 \mathrm{y}-18=0$
and
$x-2 y=2$
$x-2 y-2=0$
These equations are of the forms:
$a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$
where, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=-18$ and $\mathrm{a}_{2}=1, \mathrm{~b}_{2}=-2, \mathrm{c}_{2}=-2$
For a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$, i.e., $\frac{2}{1} \neq \frac{3}{-2}$
Hence, the given system of equations has a unique solution.
Again, the given equations are:
$2 x+3 y-18=0$
$x-2 y-2=0$
On multiplying (i) by 2 and (ii) by 3 , we get:
$4 x+6 y-36=0$
$3 x-6 y-6=0$
On adding (v) from (vi), we get:
$7 x=42$
$\Rightarrow x=6$
On substituting $x=6$ in (iii), we get:
$2(6)+3 y=18$
$\Rightarrow 3 y=(18-12)=6$
$\Rightarrow y=2$
Hence, $x=6$ and $y=2$ is the required solution.
4. Find the value of k for which the system of equations has a unique solution:
$2 x+3 y=5$,
$k x-6 y=8$.
Sol:
The given system of equations are
$2 x+3 y-5=0$
$\mathrm{kx}-6 \mathrm{y}-8=0$
This system is of the form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=-5$ and $\mathrm{a}_{2}=\mathrm{k}, \mathrm{b}_{2}=-6, \mathrm{c}_{2}=-8$
Now, for the given system of equations to have a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{2}{k} \neq \frac{3}{-6}$
$\Rightarrow \mathrm{k} \neq-4$
Hence, $k \neq-4$
5. Find the value of k for which the system of equations has a unique solution:
$x-k y=2$,
$3 \mathrm{x}+2 \mathrm{y}+5=0$.
Sol:
The given system of equations are
$\mathrm{x}-\mathrm{ky}-2=0$
$3 \mathrm{x}+2 \mathrm{y}+5=0$
This system of equations is of the form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=1, b_{1}=-k, c_{1}=-2$ and $a_{2}=3, b_{2}=2, c_{2}=5$
Now, for the given system of equations to have a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{1}{3} \neq \frac{-k}{2}$
$\Rightarrow \mathrm{k} \neq-\frac{2}{3}$
Hence, $\mathrm{k} \neq-\frac{2}{3}$.
6. Find the value of k for which the system of equations has a unique solution:
$5 x-7 y=5$,
$2 \mathrm{x}+\mathrm{ky}=1$.

Sol:

The given system of equations are
$5 \mathrm{x}-7 \mathrm{y}-5=0$
$2 \mathrm{x}+\mathrm{ky}-1=0$
This system is of the form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$
$\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=5, b_{1}=-7, c_{1}=-5$ and $a_{2}=2, b_{2}=k, c_{2}=-1$
Now, for the given system of equations to have a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{5}{2} \neq \frac{-7}{k}$
$\Rightarrow \mathrm{k} \neq-\frac{14}{5}$
Hence, $\mathrm{k} \neq-\frac{14}{5}$.
7. Find the value of k for which the system of equations has a unique solution:
$4 x+k y+8=0$,
$x+y+1=0$.

Sol:

The given system of equations are
$4 \mathrm{x}+\mathrm{ky}+8=0$
$\mathrm{x}+\mathrm{y}+1=0$
This system is of the form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$
$\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=4, \mathrm{~b}_{1}=\mathrm{k}, \mathrm{c}_{1}=8$ and $\mathrm{a}_{2}=1, \mathrm{~b}_{2}=1, \mathrm{c}_{2}=1$
For the given system of equations to have a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{4}{1} \neq \frac{k}{1}$
$\Rightarrow \mathrm{k} \neq 4$
Hence, $\mathrm{k} \neq 4$.
8. Find the value of k for which the system of equations has a unique solution:
$4 \mathrm{x}-5 \mathrm{y}=\mathrm{k}$,
$2 \mathrm{x}-3 \mathrm{y}=12$.
Sol:

The given system of equations are
$4 \mathrm{x}-5 \mathrm{y}=\mathrm{k}$
$\Rightarrow 4 \mathrm{x}-5 \mathrm{y}-\mathrm{k}=0$
And, $2 \mathrm{x}-3 \mathrm{y}=12$
$\Rightarrow 2 \mathrm{x}-3 \mathrm{y}-12=0$
These equations are of the following form:
$a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$
Here, $a_{1}=4, b_{1}=-5, c_{1}=-k$ and $a_{2}=2, b_{2}=-3, c_{2}=-12$
For a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
i.e., $\frac{4}{2} \neq \frac{-5}{-3}$
$\Rightarrow 2 \neq \frac{5}{3} \Rightarrow 6 \neq 5$
Thus, for all real values of k, the given system of equations will have a unique solution.
9. Find the value of k for which the system of equations has a unique solution:

$$
\begin{aligned}
& k x+3 y=(k-3) \\
& 12 x+k y=k
\end{aligned}
$$

Sol:

The given system of equations:
$\mathrm{kx}+3 \mathrm{y}=(\mathrm{k}-3)$
$\Rightarrow \mathrm{kx}+3 \mathrm{y}-(\mathrm{k}-3)=0$
And, $12 \mathrm{x}+\mathrm{ky}=\mathrm{k}$
$\Rightarrow 12 \mathrm{x}+\mathrm{ky}-\mathrm{k}=0$
These equations are of the following form:
$a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$
Here, $\mathrm{a}_{1}=\mathrm{k}, \mathrm{b}_{1}=3, \mathrm{c}_{1}=-(\mathrm{k}-3)$ and $\mathrm{a}_{2}=12, \mathrm{~b}_{2}=\mathrm{k}, \mathrm{c}_{2}=-\mathrm{k}$
For a unique solution, we must have:
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
i.e., $\frac{k}{12} \neq \frac{3}{k}$
$\Rightarrow \mathrm{k}^{2} \neq 36 \Rightarrow \mathrm{k} \neq \pm 6$
Thus, for all real values of k, other than ± 6, the given system of equations will have a unique solution.
10. Show that the system equations

$$
\begin{aligned}
& 2 x-3 y=5 \\
& 6 x-9 y=15
\end{aligned}
$$

has an infinite number of solutions

Sol:

The given system of equations:
$2 \mathrm{x}-3 \mathrm{y}=5$
$\Rightarrow 2 \mathrm{x}-3 \mathrm{y}-5=0$
$6 x-9 y=15$
$\Rightarrow 6 x-9 y-15=0$
These equations are of the following forms:
$a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$
Here, $a_{1}=2, b_{1}=-3, c_{1}=-5$ and $a_{2}=6, b_{2}=-9, c_{2}=-15$
$\therefore \frac{a_{1}}{a_{2}}=\frac{2}{6}=\frac{1}{3}, \frac{b_{1}}{b_{2}}=\frac{-3}{-9}=\frac{1}{3}$ and $\frac{c_{1}}{c_{2}}=\frac{-5}{-15}=\frac{1}{3}$
Thus, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Hence, the given system of equations has an infinite number of solutions.
11. Show that the system of equations
$6 x+5 y=11$,
$9 x+\frac{15}{2} y=21$
has no solution.

Sol:

The given system of equations can be written as

$$
\begin{equation*}
6 x+5 y-11=0 \tag{i}
\end{equation*}
$$

$\Rightarrow 9 x+\frac{15}{2} y-21=0$
This system is of the form
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$
$\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
Here, $a_{1}=6, b_{1}=5, c_{1}=-11$ and $a_{2}=9, b_{2}=\frac{15}{2}, c_{2}=-21$
Now,
$\frac{a_{1}}{a_{2}}=\frac{6}{9}=\frac{2}{3}$
$\frac{b_{1}}{b_{2}}=\frac{5}{\frac{15}{2}}=\frac{2}{3}$
$\frac{c_{1}}{c_{2}}=\frac{-11}{-21}=\frac{11}{21}$
Thus, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$, therefore the given system has no solution.
12. For what value of k, the system of equations
$\mathrm{kx}+2 \mathrm{y}=5$,
$3 x-4 y=10$
has (i) a unique solution, (ii) no solution?
Sol:
The given system of equations:
$k x+2 y=5$
$\Rightarrow \mathrm{kx}+2 \mathrm{y}-5=0$
$3 x-4 y=10$
$\Rightarrow 3 \mathrm{x}-4 \mathrm{y}-10=0$
These equations are of the forms:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=k, b_{1}=2, c_{1}=-5$ and $a_{2}=3, b_{2}=-4, c_{2}=-10$
(i) For a unique solution, we must have:
$\therefore \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ i.e., $\frac{k}{3} \neq \frac{2}{-4} \Rightarrow \mathrm{k} \neq \frac{-3}{2}$
Thus for all real values of k other than $\frac{-3}{2}$, the given system of equations will have a unique solution.
(ii) For the given system of equations to have no solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{k}{3}=\frac{2}{-4} \neq \frac{-5}{-10}$
$\Rightarrow \frac{k}{3}=\frac{2}{-4}$ and $\frac{k}{3} \neq \frac{1}{2}$
$\Rightarrow \mathrm{k}=\frac{-3}{2}, \mathrm{k} \neq \frac{3}{2}$
Hence, the required value of k is $\frac{-3}{2}$.
13. For what value of k, the system of equations
$x+2 y=5$,
$3 \mathrm{x}+\mathrm{ky}+15=0$
has (i) a unique solution, (ii) no solution?
Sol:
The given system of equations:
$x+2 y=5$
$\Rightarrow x+2 y-5=0$
$3 x+k y+15=0$
These equations are of the forms:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=2, \mathrm{c}_{1}=-5$ and $\mathrm{a}_{2}=3, \mathrm{~b}_{2}=\mathrm{k}, \mathrm{c}_{2}=15$
(i) For a unique solution, we must have:
$\therefore \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ i.e., $\frac{1}{3} \neq \frac{2}{k} \Rightarrow \mathrm{k} \neq 6$

Thus for all real values of k other than 6 , the given system of equations will have a unique solution.
(ii) For the given system of equations to have no solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{1}{3}=\frac{2}{k} \neq \frac{-5}{15}$
$\Rightarrow \frac{1}{3}=\frac{2}{k}$ and $\frac{2}{k} \neq \frac{-5}{15}$
$\Rightarrow \mathrm{k}=6, \mathrm{k} \neq-6$
Hence, the required value of k is 6 .
14. For what value of k, the system of equations
$x+2 y=3$,
$5 x+k y+7=0$
Have (i) a unique solution, (ii) no solution?
Also, show that there is no value of k for which the given system of equation has infinitely namely solutions

Sol:

The given system of equations:
$x+2 y=3$
$\Rightarrow x+2 y-3=0$
And, $5 \mathrm{x}+\mathrm{ky}+7=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=2, \mathrm{c}_{1}=-3$ and $\mathrm{a}_{2}=5, \mathrm{~b}_{2}=\mathrm{k}, \mathrm{c}_{2}=7$
(i) For a unique solution, we must have:
$\therefore \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ i.e., $\frac{1}{5} \neq \frac{2}{k} \Rightarrow \mathrm{k} \neq 10$
Thus for all real values of k other than 10 , the given system of equations will have a unique solution.
(ii) In order that the given system of equations has no solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{1}{5} \neq \frac{2}{k} \neq \frac{-3}{7}$
$\Rightarrow \frac{1}{5} \neq \frac{2}{k}$ and $\frac{2}{k} \neq \frac{-3}{7}$
$\Rightarrow \mathrm{k}=10, \mathrm{k} \neq \frac{14}{-3}$
Hence, the required value of k is 10 .
There is no value of k for which the given system of equations has an infinite number of solutions.
15. Find the value of k for which the system of linear equations has an infinite number of solutions:
$2 x+3 y=7$,
$(k-1) x+(k+2) y=3 k$.
Sol:
The given system of equations:
$2 \mathrm{x}+3 \mathrm{y}=7$,
$\Rightarrow 2 \mathrm{x}+3 \mathrm{y}-7=0$
And, $(k-1) x+(k+2) y=3 k$
$\Rightarrow(\mathrm{k}-1) \mathrm{x}+(\mathrm{k}+2) \mathrm{y}-3 \mathrm{k}=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=-7$ and $\mathrm{a}_{2}=(\mathrm{k}-1), \mathrm{b}_{2}=(\mathrm{k}+2), \mathrm{c}_{2}=-3 \mathrm{k}$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{2}{(k-1)}=\frac{3}{(k+2)}=\frac{-7}{-3 k}$
$\Rightarrow \frac{2}{(k-1)}=\frac{3}{(k+2)}=\frac{7}{3 k}$
Now, we have the following three cases:
Case I:
$\frac{2}{(k-1)}=\frac{3}{k+2}$
$\Rightarrow 2(\mathrm{k}+2)=3(\mathrm{k}-1) \Rightarrow 2 \mathrm{k}+4=3 \mathrm{k}-3 \Rightarrow \mathrm{k}=7$
Case II:
$\frac{3}{(k+2)}=\frac{7}{3 k}$
$\Rightarrow 7(\mathrm{k}+2)=9 \mathrm{k} \Rightarrow 7 \mathrm{k}+14=9 \mathrm{k} \Rightarrow 2 \mathrm{k}=14 \Rightarrow \mathrm{k}=7$
Case III:
$\frac{2}{(k-1)}=\frac{7}{3 k}$
$\Rightarrow 7 \mathrm{k}-7=6 \mathrm{k} \Rightarrow \mathrm{k}=7$
Hence, the given system of equations has an infinite number of solutions when k is equal to 7.
16. Find the value of k for which the system of linear equations has an infinite number of solutions:
$2 x+(k-2) y=k$,
$6 \mathrm{x}+(2 \mathrm{k}-1) \mathrm{y}=(2 \mathrm{k}+5)$.
Sol:
The given system of equations:
$2 \mathrm{x}+(\mathrm{k}-2) \mathrm{y}=\mathrm{k}$
$\Rightarrow 2 \mathrm{x}+(\mathrm{k}-2) \mathrm{y}-\mathrm{k}=0$
And, $6 \mathrm{x}+(2 \mathrm{k}-1) \mathrm{y}=(2 \mathrm{k}+5)$
$\Rightarrow 6 \mathrm{x}+(2 \mathrm{k}-1) \mathrm{y}-(2 \mathrm{k}+5)=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=2, b_{1}=(k-2), c_{1}=-k$ and $a_{2}=6, b_{2}=(2 k-1), c_{2}=-(2 k+5)$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{2}{6}=\frac{(k-2)}{(2 k-1)}=\frac{-k}{-(2 k+5)}$
$\Rightarrow \frac{1}{3}=\frac{(k-2)}{(2 k-1)}=\frac{k}{(2 k+5)}$
Now, we have the following three cases:
Case I:
$\frac{1}{3}=\frac{(k-2)}{(2 k-1)}$
$\Rightarrow(2 \mathrm{k}-1)=3(\mathrm{k}-2)$
$\Rightarrow 2 \mathrm{k}-1=3 \mathrm{k}-6 \Rightarrow \mathrm{k}=5$
Case II:
$\frac{(k-2)}{(2 k-1)}=\frac{k}{(2 k+5)}$
$\Rightarrow(\mathrm{k}-2)(2 \mathrm{k}+5)=\mathrm{k}(2 \mathrm{k}-1)$
$\Rightarrow 2 \mathrm{k}^{2}+5 \mathrm{k}-4 \mathrm{k}-10=2 \mathrm{k}^{2}-\mathrm{k}$
$\Rightarrow \mathrm{k}+\mathrm{k}=10 \Rightarrow 2 \mathrm{k}=10 \Rightarrow \mathrm{k}=5$
Case III:
$\frac{1}{3}=\frac{k}{(2 k+5)}$
$\Rightarrow 2 \mathrm{k}+5=3 \mathrm{k} \Rightarrow \mathrm{k}=5$
Hence, the given system of equations has an infinite number of solutions when k is equal to 5.
17. Find the value of k for which the system of linear equations has an infinite number of solutions:
$k x+3 y=(2 k+1)$,
$2(k+1) x+9 y=(7 k+1)$.

Sol:

The given system of equations:
$k x+3 y=(2 k+1)$
$\Rightarrow \mathrm{kx}+3 \mathrm{y}-(2 \mathrm{k}+1)=0$

And, $2(\mathrm{k}+1) \mathrm{x}+9 \mathrm{y}=(7 \mathrm{k}+1)$
$\Rightarrow 2(\mathrm{k}+1) \mathrm{x}+9 \mathrm{y}-(7 \mathrm{k}+1)=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=\mathrm{k}, \mathrm{b}_{1}=3, \mathrm{c}_{1}=-(2 \mathrm{k}+1)$ and $\mathrm{a}_{2}=2(\mathrm{k}+1), \mathrm{b}_{2}=9, \mathrm{c}_{2}=-(7 \mathrm{k}+1)$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
i.e., $\frac{k}{2(k+1)}=\frac{3}{9}=\frac{-(2 k+1)}{-(7 k+1)}$
$\Rightarrow \frac{k}{2(k+1)}=\frac{1}{3}=\frac{(2 k+1)}{(7 k+1)}$
Now, we have the following three cases:
Case I:
$\frac{k}{2(k+1)}=\frac{1}{3}$
$\Rightarrow 2(\mathrm{k}+1)=3 \mathrm{k}$
$\Rightarrow 2 \mathrm{k}+2=3 \mathrm{k}$
$\Rightarrow \mathrm{k}=2$
Case II:
$\frac{1}{3}=\frac{(2 k+1)}{(7 k+1)}$
$\Rightarrow(7 \mathrm{k}+1)=6 \mathrm{k}+3$
$\Rightarrow \mathrm{k}=2$
Case III:
$\frac{k}{2(k+1)}=\frac{(2 k+1)}{(7 k+1)}$
$\Rightarrow \mathrm{k}(7 \mathrm{k}+1)=(2 \mathrm{k}+1) \times 2(\mathrm{k}+1)$
$\Rightarrow 7 \mathrm{k}^{2}+\mathrm{k}=(2 \mathrm{k}+1)(2 \mathrm{k}+2)$
$\Rightarrow 7 \mathrm{k}^{2}+\mathrm{k}=4 \mathrm{k}^{2}+4 \mathrm{k}+2 \mathrm{k}+2$
$\Rightarrow 3 \mathrm{k}^{2}-5 \mathrm{k}-2=0$
$\Rightarrow 3 \mathrm{k}^{2}-6 \mathrm{k}+\mathrm{k}-2=0$
$\Rightarrow 3 \mathrm{k}(\mathrm{k}-2)+1(\mathrm{k}-2)=0$
$\Rightarrow(3 \mathrm{k}+1)(\mathrm{k}-2)=0$
$\Rightarrow \mathrm{k}=2$ or $\mathrm{k}=\frac{-1}{3}$
Hence, the given system of equations has an infinite number of solutions when k is equal to 2.
18. Find the value of k for which the system of linear equations has an infinite number of solutions:
$5 \mathrm{x}+2 \mathrm{y}=2 \mathrm{k}$,
$2(k+1) x+k y=(3 k+4)$.
Sol:
The given system of equations:
$5 \mathrm{x}+2 \mathrm{y}=2 \mathrm{k}$
$\Rightarrow 5 \mathrm{x}+2 \mathrm{y}-2 \mathrm{k}=0$
And, $2(\mathrm{k}+1) \mathrm{x}+\mathrm{ky}=(3 \mathrm{k}+4)$
$\Rightarrow 2(\mathrm{k}+1) \mathrm{x}+\mathrm{ky}-(3 \mathrm{k}+4)=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=5, \mathrm{~b}_{1}=2, \mathrm{c}_{1}=-2 \mathrm{k}$ and $\mathrm{a}_{2}=2(\mathrm{k}+1), \mathrm{b}_{2}=\mathrm{k}, \mathrm{c}_{2}=-(3 \mathrm{k}+4)$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{5}{2(k+1)}=\frac{2}{k}=\frac{-2 k}{-(3 k+4)}$
$\Rightarrow \frac{5}{2(k+1)}=\frac{2}{k}=\frac{2 k}{(3 k+4)}$
Now, we have the following three cases:
Case I:
$\frac{5}{2(k+1)}=\frac{2}{k}$
$\Rightarrow 2 \times 2(\mathrm{k}+1)=5 \mathrm{k}$
$\Rightarrow 4(\mathrm{k}+1)=5 \mathrm{k}$
$\Rightarrow 4 \mathrm{k}+4=5 \mathrm{k}$
$\Rightarrow \mathrm{k}=4$
Case II:
$\frac{2}{k}=\frac{2 k}{(3 k+4)}$
$\Rightarrow 2 \mathrm{k}^{2}=2 \times(3 \mathrm{k}+4)$
$\Rightarrow 2 \mathrm{k}^{2}=6 \mathrm{k}+8 \Rightarrow 2 \mathrm{k}^{2}-6 \mathrm{k}-8=0$
$\Rightarrow 2\left(\mathrm{k}^{2}-3 \mathrm{k}-4\right)=0$
$\Rightarrow \mathrm{k}^{2}-4 \mathrm{k}+\mathrm{k}-4=0$
$\Rightarrow \mathrm{k}(\mathrm{k}-4)+1(\mathrm{k}-4)=0$
$\Rightarrow(\mathrm{k}+1)(\mathrm{k}-4)=0$
$\Rightarrow(\mathrm{k}+1)=0$ or $(\mathrm{k}-4)=0$
$\Rightarrow \mathrm{k}=-1$ or $\mathrm{k}=4$
Case III:
$\frac{5}{2(k+1)}=\frac{2 k}{(3 k+4)}$
$\Rightarrow 15 \mathrm{k}+20=4 \mathrm{k}^{2}+4 \mathrm{k}$
$\Rightarrow 4 \mathrm{k}^{2}-11 \mathrm{k}-20=0$
$\Rightarrow 4 \mathrm{k}^{2}-16 \mathrm{k}+5 \mathrm{k}-20=0$
$\Rightarrow 4 \mathrm{k}(\mathrm{k}-4)+5(\mathrm{k}-4)=0$
$\Rightarrow(\mathrm{k}-4)(4 \mathrm{k}+5)=0$
$\Rightarrow \mathrm{k}=4$ or $\mathrm{k}=\frac{-5}{4}$
Hence, the given system of equations has an infinite number of solutions when k is equal to 4.
19. Find the value of k for which the system of linear equations has an infinite number of solutions:
$(k-1) x-y=5$,
$(k+1) x+(1-k) y=(3 k+1)$.

Sol:

The given system of equations:
$(k-1) x-y=5$
$\Rightarrow(\mathrm{k}-1) \mathrm{x}-\mathrm{y}-5=0$
And, $(k+1) x+(1-k) y=(3 k+1)$
$\Rightarrow(k+1) x+(1-k) y-(3 k+1)=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=(\mathrm{k}-1), \mathrm{b}_{1}=-1, \mathrm{c}_{1}=-5$ and $\mathrm{a}_{2}=(\mathrm{k}+1), \mathrm{b}_{2}=(1-\mathrm{k}), \mathrm{c}_{2}=-(3 \mathrm{k}+1)$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
i.e., $\frac{(\mathrm{k}-1)}{(k+1)}=\frac{-1}{-(k-1)}=\frac{-5}{-(3 k+1)}$
$\Rightarrow \frac{(\mathrm{k}-1)}{(k+1)}=\frac{1}{(k-1)}=\frac{5}{(3 k+1)}$
Now, we have the following three cases:
Case I:
$\frac{(\mathrm{k}-1)}{(k+1)}=\frac{1}{(k-1)}$
$\Rightarrow(\mathrm{k}-1)^{2}=(\mathrm{k}+1)$
$\Rightarrow \mathrm{k}^{2}+1-2 \mathrm{k}=\mathrm{k}+1$
$\Rightarrow \mathrm{k}^{2}-3 \mathrm{k}=0 \Rightarrow \mathrm{k}(\mathrm{k}-3)=0$
$\Rightarrow \mathrm{k}=0$ or $\mathrm{k}=3$
Case II:
$\frac{1}{(k-1)}=\frac{5}{(3 k+1)}$
$\Rightarrow 3 \mathrm{k}+1=5 \mathrm{k}-5$
$\Rightarrow 2 \mathrm{k}=6 \Rightarrow \mathrm{k}=3$
Case III:
$\frac{(\mathrm{k}-1)}{(k+1)}=\frac{5}{(3 k+1)}$
$\Rightarrow(3 \mathrm{k}+1)(\mathrm{k}-1)=5(\mathrm{k}+1)$
$\Rightarrow 3 \mathrm{k}^{2}+\mathrm{k}-3 \mathrm{k}-1=5 \mathrm{k}+5$
$\Rightarrow 3 \mathrm{k}^{2}-2 \mathrm{k}-5 \mathrm{k}-1-5=0$
$\Rightarrow 3 \mathrm{k}^{2}-7 \mathrm{k}-6=0$
$\Rightarrow 3 \mathrm{k}^{2}-9 \mathrm{k}+2 \mathrm{k}-6=0$
$\Rightarrow 3 \mathrm{k}(\mathrm{k}-3)+2(\mathrm{k}-3)=0$
$\Rightarrow(\mathrm{k}-3)(3 \mathrm{k}+2)=0$
$\Rightarrow(\mathrm{k}-3)=0$ or $(3 \mathrm{k}+2)=0$
$\Rightarrow \mathrm{k}=3$ or $\mathrm{k}=\frac{-2}{3}$
Hence, the given system of equations has an infinite number of solutions when k is equal to 3.
20. Find the value of k for which the system of linear equations has a unique solution:
$(k-3) x+3 y-k, k x+k y-12=0$.

Sol:

The given system of equations can be written as
$(k-3) x+3 y-k=0$
$\mathrm{kx}+\mathrm{ky}-12=0$
This system is of the form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$
$\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=\mathrm{k}, \mathrm{b}_{1}=3, \mathrm{c}_{1}=-\mathrm{k}$ and $\mathrm{a}_{2}=\mathrm{k}, \mathrm{b}_{2}=\mathrm{k}, \mathrm{c}_{2}=-12$
For the given system of equations to have a unique solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{k-3}{k}=\frac{3}{k}=\frac{-k}{-12}$
$\Rightarrow \mathrm{k}-3=3$ and $\mathrm{k}^{2}=36$
$\Rightarrow \mathrm{k}=6$ and $\mathrm{k}= \pm 6$
$\Rightarrow \mathrm{k}=6$
Hence, $\mathrm{k}=6$.
21. Find the values of a and b for which the system of linear equations has an infinite number of solutions:
$(a-1) x+3 y=2,6 x+(1-2 b) y=6$

Sol:

The given system of equations can be written as
$(a-1) x+3 y=2$
$\Rightarrow(a-1) x+3 y-2=0$
and $6 x+(1-2 b) y=6$
$\Rightarrow 6 x+(1-2 b) y-6=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$
$\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=(a-1), b_{1}=3, c_{1}=-2$ and $a_{2}=6, b_{2}=(1-2 b), c_{2}=-6$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{a-1}{6}=\frac{3}{(1-2 b)}=\frac{-2}{-6}$
$\Rightarrow \frac{a-1}{6}=\frac{3}{(1-2 b)}=\frac{1}{3}$
$\Rightarrow \frac{a-1}{6}=\frac{1}{3}$ and $\frac{3}{(1-2 b)}=\frac{1}{3}$
$\Rightarrow 3 \mathrm{a}-3=6$ and $9=1-2 \mathrm{~b}$
$\Rightarrow 3 \mathrm{a}=9$ and $2 \mathrm{~b}=-8$
$\Rightarrow \mathrm{a}=3$ and $\mathrm{b}=-4$
$\therefore \mathrm{a}=3$ and $\mathrm{b}=-4$
22. Find the values of a and b for which the system of linear equations has an infinite number of solutions:
$(2 a-1) x+3 y=5,3 x+(b-1) y=2$.

Sol:

The given system of equations can be written as
$(2 a-1) x+3 y=5$
$\Rightarrow(2 a-1) x+3 y-5=0$
and $3 x+(b-1) y=2$
$\Rightarrow 3 \mathrm{x}+(\mathrm{b}-1) \mathrm{y}-2=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=(2 a-1), b_{1}=3, c_{1}=-5$ and $a_{2}=3, b_{2}=(b-1), c_{2}=-2$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{(2 a-1)}{3}=\frac{3}{(b-1)}=\frac{-5}{-2}$
$\Rightarrow \frac{(2 a-1)}{6}=\frac{3}{(b-1)}=\frac{5}{2}$
$\Rightarrow \frac{(2 a-1)}{6}=\frac{5}{2}$ and $\frac{3}{(b-1)}=\frac{5}{2}$
$\Rightarrow 2(2 \mathrm{a}-1)=15$ and $6=5(\mathrm{~b}-1)$
$\Rightarrow 4 \mathrm{a}-2=15$ and $6=5 \mathrm{~b}-5$
$\Rightarrow 4 \mathrm{a}=17$ and $5 \mathrm{~b}=11$
$\therefore \mathrm{a}=\frac{17}{4}$ and $\mathrm{b}=\frac{11}{5}$
23. Find the values of a and b for which the system of linear equations has an infinite number of solutions:
$2 x-3 y=7,(a+b) x-(a+b-3) y=4 a+b$.
Sol:
The given system of equations can be written as
$2 \mathrm{x}-3 \mathrm{y}=7$
$\Rightarrow 2 \mathrm{x}-3 \mathrm{y}-7=0$
and $(a+b) x-(a+b-3) y=4 a+b$
$\Rightarrow(a+b) x-(a+b-3) y-4 a+b=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
Here, $a_{1}=2, b_{1}=-3, c_{1}=-7$ and $a_{2}=(a+b), b_{2}=-(a+b-3), c_{2}=-(4 a+b)$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{2}{a+b}=\frac{-3}{-(a+b-3)}=\frac{-7}{-(4 a+b)}$
$\Rightarrow \frac{2}{a+b}=\frac{3}{(a+b-3)}=\frac{7}{(4 a+b)}$
$\Rightarrow \frac{2}{a+b}=\frac{7}{(4 a+b)}$ and $\frac{3}{(a+b-3)}=\frac{7}{(4 a+b)}$
$\Rightarrow 2(4 a+b)=7(a+b)$ and $3(4 a+b)=7(a+b-3)$
$\Rightarrow 8 \mathrm{a}+2 \mathrm{~b}=7 \mathrm{a}+7 \mathrm{~b}$ and $12 \mathrm{a}+3 \mathrm{~b}=7 \mathrm{a}+7 \mathrm{~b}-21$
$\Rightarrow 4 \mathrm{a}=17$ and $5 \mathrm{~b}=11$
$\therefore \mathrm{a}=5 \mathrm{~b}$
and $5 \mathrm{a}=4 \mathrm{~b}-21$
On substituting $\mathrm{a}=5 \mathrm{~b}$ in (iv), we get:
$25 b=4 b-21$
$\Rightarrow 21 \mathrm{~b}=-21$
$\Rightarrow b=-1$
On substituting $\mathrm{b}=-1$ in (iii), we get:
$\mathrm{a}=5(-1)=-5$
$\therefore \mathrm{a}=-5$ and $\mathrm{b}=-1$.
24. Find the values of a and b for which the system of linear equations has an infinite number of solutions:
$2 x+3 y=7,(a+b+1) x-(a+2 b+2) y=4(a+b)+1$.

Sol:

The given system of equations can be written as
$2 \mathrm{x}+3 \mathrm{y}=7$
$\Rightarrow 2 \mathrm{x}+3 \mathrm{y}-7=0$
and $(a+b+1) x-(a+2 b+2) y=4(a+b)+1$
$(a+b+1) x-(a+2 b+2) y-[4(a+b)+1]=0$
These equations are of the following form:
$a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$
where, $a_{1}=2, b_{1}=3, c_{1}=-7$ and $a_{2}=(a+b+1), b_{2}=(a+2 b+2), c_{2}=-[4(a+b)+1]$
For an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{2}{(a+b+1)}=\frac{3}{(a+2 b+2)}=\frac{-7}{-[4(a+b)+1]}$
$\Rightarrow \frac{2}{(a+b+1)}=\frac{3}{(a+2 b+2)}=\frac{7}{[4(a+b)+1]}$
$\Rightarrow \frac{2}{(a+b+1)}=\frac{3}{(a+2 b+2)}$ and $\frac{3}{(a+2 b+2)}=\frac{7}{[4(a+b)+1]}$
$\Rightarrow 2(\mathrm{a}+2 \mathrm{~b}+2)=3(\mathrm{a}+\mathrm{b}+1)$ and $3[4(\mathrm{a}+\mathrm{b})+1]=7(\mathrm{a}+2 \mathrm{~b}+2)$
$\Rightarrow 2 \mathrm{a}+4 \mathrm{~b}+4=3 \mathrm{a}+3 \mathrm{~b}+3$ and $3(4 \mathrm{a}+4 \mathrm{~b}+1)=7 \mathrm{a}+14 \mathrm{~b}+14$
$\Rightarrow \mathrm{a}-\mathrm{b}-1=0$ and $12 \mathrm{a}+12 \mathrm{~b}+3=7 \mathrm{a}+14 \mathrm{~b}+14$
$\Rightarrow \mathrm{a}-\mathrm{b}=1$ and $5 \mathrm{a}-2 \mathrm{~b}=11$
$\mathrm{a}=(\mathrm{b}+1)$
$5 \mathrm{a}-2 \mathrm{~b}=11$
On substituting $a=(b+1)$ in (iv), we get:
$5(b+1)-2 b=11$
$\Rightarrow 5 \mathrm{~b}+5-2 \mathrm{~b}=11$
$\Rightarrow 3 \mathrm{~b}=6$
$\Rightarrow \mathrm{b}=2$
On substituting $b=2$ in (iii), we get:
$\mathrm{a}=3$
$\therefore \mathrm{a}=3$ and $\mathrm{b}=2$.
25. Find the values of a and b for which the system of linear equations has an infinite number of solutions:

$$
2 x+3 y=7,(a+b) x+(2 a-b) y=21
$$

Sol:

The given system of equations can be written as
$2 x+3 y-7=0$
$(a+b) x+(2 a-b) y-21=0$
This system is of the form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=2, b_{1}=3, c_{1}=-7$ and $a_{2}=a+b, b_{2}=2 a-b, c_{2}=-21$
For the given system of linear equations to have an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{2}{a+b}=\frac{3}{2 a-b}=\frac{-7}{-21}$
$\Rightarrow \frac{2}{a+b}=\frac{-7}{-21}=\frac{1}{3}$ and $\frac{3}{2 a-b}=\frac{-7}{-21}=\frac{1}{3}$
$\Rightarrow \mathrm{a}+\mathrm{b}=6$ and $2 \mathrm{a}-\mathrm{b}=9$
Adding $\mathrm{a}+\mathrm{b}=6$ and $2 \mathrm{a}-\mathrm{b}=9$, we get
$3 \mathrm{a}=15 \Rightarrow \mathrm{a}=\frac{15}{3}=3$
Now substituting $\mathrm{a}=5$ in $\mathrm{a}+\mathrm{b}=6$, we have
$5+\mathrm{b}=6 \Rightarrow \mathrm{~b}=6-5=1$
Hence, $\mathrm{a}=5$ and $\mathrm{b}=1$.
26. Find the values of a and b for which the system of linear equations has an infinite number of solutions:
$2 \mathrm{x}+3 \mathrm{y}=7,2 \mathrm{ax}+(\mathrm{a}+\mathrm{b}) \mathrm{y}=28$.
Sol:
The given system of equations can be written as

$$
\begin{equation*}
2 x+3 y-7=0 \tag{i}
\end{equation*}
$$

$2 \mathrm{ax}+(\mathrm{a}+\mathrm{b}) \mathrm{y}-28=0$
This system is of the form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$
$\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=-7$ and $\mathrm{a}_{2}=2 \mathrm{a}, \mathrm{b}_{2}=\mathrm{a}+\mathrm{b}, \mathrm{c}_{2}=-28$
For the given system of linear equations to have an infinite number of solutions, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{2}{2 a}=\frac{3}{a+b}=\frac{-7}{-28}$
$\Rightarrow \frac{2}{2 a}=\frac{-7}{-28}=\frac{1}{4}$ and $\frac{3}{a+b}=\frac{-7}{-28}=\frac{1}{4}$
$\Rightarrow \mathrm{a}=4$ and $\mathrm{a}+\mathrm{b}=12$
Substituting $\mathrm{a}=4$ in $\mathrm{a}+\mathrm{b}=12$, we get
$4+\mathrm{b}=12 \Rightarrow \mathrm{~b}=12-4=8$
Hence, $\mathrm{a}=4$ and $\mathrm{b}=8$.
27. Find the value of k for which the system of equations
$8 x+5 y=9, k x+10 y=15$
has a non-zero solution.

Sol:

The given system of equations:
$8 x+5 y=9$
$8 x+5 y-9=0$
$k x+10 y=15$
$\mathrm{kx}+10 \mathrm{y}-15=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=8, b_{1}=5, c_{1}=-9$ and $a_{2}=k, b_{2}=10, c_{2}=-15$
In order that the given system has no solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
i.e., $\frac{8}{k}=\frac{5}{10} \neq \frac{-9}{-15}$
i.e., $\frac{8}{k}=\frac{1}{2} \neq \frac{3}{5}$
$\frac{8}{k}=\frac{1}{2}$ and $\frac{8}{k} \neq \frac{3}{5}$
$\Rightarrow \mathrm{k}=16$ and $\mathrm{k} \neq \frac{40}{3}$
Hence, the given system of equations has no solutions when k is equal to 16 .
28. Find the value of k for which the system of equations
$k x+3 y=3,12 x+k y=6$ has no solution.

Sol:

The given system of equations:

$$
\begin{align*}
& k x+3 y=3 \\
& k x+3 y-3=0 \tag{i}\\
& 12 x+k y=6 \\
& 12 x+k y-6=0 \tag{ii}
\end{align*}
$$

These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=k, b_{1}=3, c_{1}=-3$ and $a_{2}=12, b_{2}=k, c_{2}=-6$
In order that the given system has no solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
i.e., $\frac{k}{12}=\frac{3}{k} \neq \frac{-3}{-6}$
$\frac{k}{12}=\frac{3}{k}$ and $\frac{3}{k} \neq \frac{1}{2}$
$\Rightarrow \mathrm{k}^{2}=36$ and $\mathrm{k} \neq 6$
$\Rightarrow \mathrm{k}= \pm 6$ and $\mathrm{k} \neq 6$
Hence, the given system of equations has no solution when k is equal to -6 .
29. Find the value of k for which the system of equations
$3 x-y=5,6 x-2 y=k$
has no solution.

Sol:

The given system of equations:

$$
\begin{equation*}
3 x-y-5=0 \tag{i}
\end{equation*}
$$

And, $6 \mathrm{x}-2 \mathrm{y}+\mathrm{k}=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=3, b_{1}=-1, c_{1}=-5$ and $a_{2}=6, b_{2}=-2, c_{2}=k$
In order that the given system has no solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
i.e., $\frac{3}{6}=\frac{-1}{-2} \neq \frac{-5}{k}$
$\Rightarrow \frac{-1}{-2} \neq \frac{-5}{k} \Rightarrow \mathrm{k} \neq-10$
Hence, equations (i) and (ii) will have no solution if $k \neq-10$.
30. Find the value of k for which the system of equations
$k x+3 y+3-k=0,12 x+k y-k=0$
has no solution.

Sol:

The given system of equations can be written as

$$
\begin{align*}
& k x+3 y+3-k=0 \tag{i}\\
& 12 x+k y-k=0
\end{align*}
$$

This system of the form:

$$
\begin{aligned}
& \mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0 \\
& \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0 \\
& \text { where, } \mathrm{a}_{1}=\mathrm{k}, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=3-\mathrm{k} \text { and } \mathrm{a}_{2}=12, \mathrm{~b}_{2}=\mathrm{k}, \mathrm{c}_{2}=-\mathrm{k}
\end{aligned}
$$

For the given system of linear equations to have no solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\Rightarrow \frac{k}{12}=\frac{3}{k} \neq \frac{3-k}{-k}$
$\Rightarrow \frac{k}{12}=\frac{3}{k}$ and $\frac{3}{k} \neq \frac{3-k}{-k}$
$\Rightarrow \mathrm{k}^{2}=36$ and $-3 \neq 3-\mathrm{k}$
$\Rightarrow \mathrm{k}= \pm 6$ and $\mathrm{k} \neq 6$
$\Rightarrow \mathrm{k}=-6$
Hence, $\mathrm{k}=-6$.
31. Find the value of k for which the system of equations
$5 \mathrm{x}-3 \mathrm{y}=0,2 \mathrm{x}+\mathrm{ky}=0$
has a non-zero solution.

Sol:

The given system of equations:
$5 x-3 y=0$
$2 \mathrm{x}+\mathrm{ky}=0$
These equations are of the following form:
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $a_{1}=5, b_{1}=-3, c_{1}=0$ and $a_{2}=2, b_{2}=k, c_{2}=0$
For a non-zero solution, we must have:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$
$\Rightarrow \frac{5}{2}=\frac{-3}{k}$
$\Rightarrow 5 \mathrm{k}=-6 \Rightarrow \mathrm{k}=\frac{-6}{5}$
Hence, the required value of k is $\frac{-6}{5}$.

