RD SHARMA
Solutions
Class 10 Maths
Chapter 1
Ex 1.6

Q.1: Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion.

(i) 238
$$\frac{23}{8}$$

(ii) 125441
$$\frac{125}{441}$$

(iii) 3550
$$\frac{35}{50}$$

(iv) 77210
$$\frac{77}{210}$$

(v) 1292
2
×5 7 ×7 17 $\frac{129}{2^2$ ×5 7 ×7 17

Sol:

(i) The given number is $238 \frac{23}{8}$

Here, $8 = 2^3$ and 2 is not a factor of 23.

So, the given number is in its simplest form.

Now, $8 = 2^3$ is of the form $2^m \times 5^n$, where m = 3 and n = 0.

So, the given number has a terminating decimal expansion.

(ii) The given number is 125441 $\frac{125}{441}$

Here, $441 = 3^2 \times 7^2$ and none of 3 and 7 is a factor of 125.

So, the given number is in its simplest form.

Now, $441 = 3^2 \times 7^2$ is not of the form $2^m \times 5^n$

So, the given number has a non-terminating repeating decimal expansion.

(iii) The given number is $3550 \frac{35}{50}$ and HCF(35, 50) = 5.

$$\therefore 3560 = 35/550/5 = 710 \therefore \frac{35}{60} = \frac{35/5}{50/5} = \frac{7}{10}$$

Here, 710 $\frac{7}{10}$ is in its simplest form.

Now, $10 = 2 \times 5$ is of the form $2^m \times 5^n$, where in = 1 and n = 1.

So, the given number has a terminating decimal expansion.

(iv) The given number is $77210 \frac{77}{210}$ and HCF(77, 210) = 7.

$$\therefore 77:7210:7 = 1130 \therefore \frac{77:7}{210:7} = \frac{11}{30}$$

Here, 1130 $\frac{11}{30}$ is in its simplest form. 30

Now, $30 = 2 \times 3 \times 5$ is not of the form $2^m \times 5^n$.

So, the given number has a non-terminating repeating decimal expansion.

(v) The given number is $1292^2 \times 5^7 \times 7^{17} \frac{129}{2^2 \times 5^7 \times 7^{17}}$

Clearly, none of 2, 5 and 7 is a factor of 129.

So, the given number is in its simplest form.

Q.2: Write down the decimal expansions of the following rational numbers by writing their denominators in the form of $2^m \times 5^n$, where m, and n, are the non- negative integers.

- (i) 38 $\frac{3}{8}$
- (ii) 13125 $\frac{13}{125}$
- (iii) 780 $\frac{7}{80}$
- (iv) 14588625 $\frac{14588}{625}$
- (v) 1292⁴×5⁷ $\frac{129}{2^4 \times 5^7}$

Sol:

(i) The given number is $38\frac{3}{8}$

Clearly, $8 = 2^3$ is of the form $2^m \times 5^n$, where m = 3 and n = 0.

So, the given number has terminating decimal expansion.

$$3 \times 5^{3} \times 5^{3} = 3 \times 125(2 \times 5)^{3} = 375(10)^{3} = 3751000 = 0.375 : \frac{3 \times 5^{3}}{2^{3} \times 5^{3}} = \frac{3 \times 125}{(2 \times 5)^{3}} = \frac{375}{(10)^{3}} = \frac{375}{1000} = 0.375$$

(ii) The given number is $13125 \frac{13}{125}$.

Clearly, $125 = 5^3$ is of the form $2m \times 5^n$, where m = 0 and n = 3.

So, the given number has terminating decimal expansion.

$$38 = 3 \times 5^3 (2 \times 5)^3 = 3751000 \frac{3}{8} = \frac{3 \times 5^3}{(2 \times 5)^3} = \frac{375}{1000}$$

(iii) The given number is $780 \frac{7}{80}$.

Clearly, $80 = 2^4 \times 5$ is of the form $2^m \times 5^n$, where m = 4 and n = 1.

So, the given number has terminating decimal expansion.

$$\therefore 780 = 7 \times 5^{3} \times 2^{4} \times 5 \times 5^{3} = 7 \times 125(2 \times 5)^{4} = 87510^{4} = 87510000 = 0.0875$$

$$\therefore \frac{7}{80} = \frac{7 \times 5^3}{2^4 \times 5 \times 5^3} = \frac{7 \times 125}{(2 \times 5)^4} = \frac{875}{10^4} = \frac{875}{10000} = 0.0875$$

(iv) The given number is $14588625 \frac{14588}{625}$

Clearly, $625 = 5^4$ is of the form $2^m \times 5^n$, where m = 0 and n = 4.

So, the given number has terminating decimal expansion.

(v) The given number is $1292^4 \times 5^7 \frac{129}{2^4 \times 5^7}$

Clearly, $2^2 \times 5^7$ is of the form $2^m \times 5^n$, where in = 2 and n = 7.

So, the given number has terminating decimal expansion.

Q.4: what can you say about the prime factorization of the denominators of the following rational:

- (i) 43.123456789
- (ii) **43**. 123456789
- (iii) **27.** 14285727.142857
- (iv) 0.120120012000120000

Sol:

- (i) Since 43.123456789 has terminating decimal expansion. So, its denominator is of the form $2^m \times 5^n$, where m, n are non-negative integers.
- (ii) Since 43. 12345678943.123456789 has non-terminating decimal expansion. So, its denominator has factors other than 2 or 5.
- (iii) Since 27. 14285727.142857 has non-terminating decimal expansion. So, its denominator has factors other than 2 or 5.
- (iv) Since 0.120120012000120000 ... has non-terminating decimal expansion. So, its denominator has factors other than 2 or 5.