RD SHARMA Solutions Class 10 Maths Chapter 7 Ex 7.3 # 1. The following table gives the distribution of total household expenditure (in rupees) of manual workers in a city. | Expenditure
(in rupees) (x) | Frequency
(f _i) | Expenditure
(in rupees)
(x _i) | Frequency
(f _i) | |--------------------------------|--------------------------------|---|--------------------------------| | 100 – 150 | 24 | 300 – 350 | 30 | | 150 – 200 | 40 | 350 – 400 | 22 | | 200 – 250 | 33 | 400 – 450 | 16 | | 250 – 300 | 28 | 450 – 500 | 7 | ## Find the average expenditure (in rupees) per household **Soln**: Let the assumed mean (A) = 275 | Class
interval | Mid
value
(x _i) | d _i = x _i – 275 | u _i = (x _i -
275)/50 | Frequency f _i | f _i u _i | |---------------------|-----------------------------------|---------------------------------------|---|--------------------------|-------------------------------| | 100 –
150 | 125 | -150 | -3 | 24 | -12 | | 150 –
200 | 175 | -100 | -2 | 40 | -80 | | 200 –
250 | 225 | -50 | -1 | 33 | -33 | | 250 –
300 | 275 | 0 | 0 | 28 | 0 | | 300 –
350 | 325 | 50 | 1 | 30 | 30 | | 350 –
400 | 375 | 100 | 2 | 22 | 44 | | 400 –
450 | 425 | 150 | 3 | 16 | 48 | | | | | | | | | 450 –
500 | 475 | 200 | 4 | 7 | 28 | |--------------|-----|-----|---|---------|--------------| | | | | | N = 200 | Sum =
-35 | We have $$A = 275, h = 50$$ Mean = $$A + h * sum/N = 275 + 50 * -35/200 = 275 - 8.75 = 266.25$$ 2. A survey was conducted by a group of students as a part of their environmental awareness program, in which they collected the following data regarding the number of plants in 200 houses in a locality. Find the mean number of plants per house. | Number of plants: | 0-2 | 2-4 | 4-6
12 | 6-B
12-14 | 8-10 | 10- | |-------------------|-----|-----|-----------|--------------|------|-----| | Number of houses: | 1 | 2 | 1
2 | 5
3 | 6 | | Which method did you use for finding the mean, and why? #### Soln: Let us find class marks $(x_i) = (upper class limit + lower class limit)/2$ Now we may compute x_i and f_ix_i as following. | Number of plants | Number of house (f _i) | x _i | F _i x _i | |------------------|-----------------------------------|----------------|-------------------------------| | 0 – 2 | 1 | 1 | 1 | | 2 – 4 | 2 | 3 | 6 | | 4 – 6 | 1 | 5 | 5 | | 6 – 8 | 5 | 7 | 35 | | 8 – 10 | 6 | 9 | 54 | | | | | | | 10 – 12 | 2 | 11 | 22 | |---------|--------|----|-----------| | 12 – 14 | 3 | 13 | 39 | | Total | N = 20 | | Sum = 162 | From the table we may observe that N = 20 Sum = 162 Mean $\overline{x} = \text{Sum/N}$ 162/20 = 8.1 So mean number of plants per house is 8.1 We have used for the direct method values \boldsymbol{X}_i and \boldsymbol{f}_i are very small ### 3. Consider the following distribution of daily wages of workers of a factory | Daily wages | 100 - 120 | 120-140 | 140- | |--------------------|------------------|---------|---------| | (in Rs) | 160 | 160-180 | 180-200 | | Number of workers: | 12
8 | 16
6 | 10 | Find the mean daily wages of the workers of the factory by using an appropriate method. **Soln:** Let the assume mean (A) = 150 | Class
interval | Mid
value
x _i | d _i = x _i – 150 | u _i = (x _i -
150)/20 | Frequency
f _i | F _i u _i | |---------------------|--------------------------------|---------------------------------------|---|-----------------------------|-------------------------------| | 100 –
120 | 110 | -40 | -2 | 12 | -24 | | 120 –
140 | 130 | -20 | -1 | 14 | -14 | | 140 –
160 | 150 | 0 | 0 | 8 | 0 | | 160 –
180 | 170 | 20 | 1 | 6 | 6 | |---------------------|-----|----|--------|-----------|----| | 180 –
200 | 190 | 40 | 2 | 10 | 20 | | | | | N = 50 | Sum = -12 | | We have $$N = 50, h = 20$$ Mean = $A + h \times sum/N$ $$= 150 + 2 \times (-15)/5$$ $$= 150 - 4.8$$ 4. Thirty women were examined in a hospital by a doctor and the number of heart beats per minute recorded and summarized as follows. Find the mean heart beats per minute for these women, choosing a suitable method. #### **Number of heart** | Beats Per
minute: | 65 – 68
– 83 83 | | 71 – 74 | 74 – 77 | 77 – 80 | 80 | |----------------------|--------------------|---|---------|---------|---------|----| | Number of women: | 2 | 4 | 3
4 | 8
2 | 7 | | **Soln**: we may find marks of each interval (x_i) by using the relation (x_i) = (upper class limit + lower class limit)/2 Class size of this data = 3 Now talking 75.5 as assumed mean (a) We may calculate d_i , u_i , f_iu_i as following | Number
of heart
beats per
minute | Number
of
women
(x _i) | x _i | d _i = x _i – 75.5 | u _i = (x _i – 755)/h | f _i u _i | |---|--|----------------|--|---|-------------------------------| | 65-68 | 2 | 66.5 | -9 | -3 | -6 | | | | | | | | | 68-71 | 9 | 69.5 | -6 | -2 | -8 | |-------|--------|------|----|----|---------| | 71-74 | 3 | 72.5 | -3 | -1 | -3 | | 74-77 | 8 | 75.5 | 0 | 0 | 0 | | 77-80 | 7 | 78.5 | 3 | 1 | 7 | | 80-83 | 4 | 81.5 | 6 | 2 | 8 | | 83-86 | 2 | 84.5 | 9 | 3 | 6 | | | N = 30 | | | | Sum = 4 | Now we may observe from table that N = 30, sum = 4 Mean $$\overline{x} = 75.5 + (4/3)x3$$ $$= 75.5 + 0.4$$ = 75.9 So mean heart beats per minute for those women are 75.9 beats per minute ### 5. Find the mean of each of the following frequency distributions: (5-14) | Class interval: | 0-6 | 6-12 | 12-18 | 18-24 | 24-30 | | |-----------------|-----|------|-------|-------|-------|--| | Frequency: | 6 | 8 | 10 | 9 | 7 | | #### Soln: Let us assume mean be 15 | Class
interval | Mid –
value | d _i = x _i –
15 | u _i = (x _i –
15)/6 | f _i | f _i u _i | |-------------------|----------------|---|---|----------------|-------------------------------| | 0 – 6 | 3 | -12 | -2 | 6 | -12 | | 6 – 12 | 9 | -6 | -1 | 8 | -8 | | 12 – 18 | 15 | 0 | 0 | 10 | 0 | | 18 – 24 | 21 | 6 | 1 | 9 | 9 | | 24 – 30 | 27 | 18 | 2 | 7 | 14 | | | | | | N = 40 | Sum = 3 | Mean = A + h(sum/A) = 15 + 6(3/40) = 15 + 0.45 = 15.45 6. | Class interval: | 50-70
150-170 | | 90-110 | 110-130 | 130-150 | |-----------------|------------------|----------|--------|---------|---------| | Frequency: | 18
8 | 12
22 | 13 | 27 | | Soln: Let us assumed mean be 100 | Class
interval | Mid-
value x _i | d _i = x _i –
100 | $u_i = (x_i - 100)/20$ | f _i | f _i u _i | |-------------------|------------------------------|--|------------------------|----------------|-------------------------------| | 50 – 70 | 60 | -40 | -2 | 18 | -36 | | 70 – 90 | 80 | -20 | -1 | 12 | -12 | | 90 – 110 | 100 | 0 | 0 | 13 | 0 | | 110 —
130 | 120 | 20 | 1 | 27 | 27 | | 130 –
150 | 140 | 40 | 2 | 8 | 16 | | 150 –
170 | 160 | 60 | 3 | 22 | 66 | | | | | | | 61 | A = 100, h = 20 Mean = 100 + 20 (61/100) = 100 + 12.2 = 112.2 | Class
interval: | 0-8 | 8-16 | 16-24 | 24-32 | 32-40 | |--------------------|-----|------|-------|-------|-------| | Frequency: | 6 | 7 | 10 | 8 | 9 | **Soln:** Let the assumed mean (A) = 20 | Class
interval | Mid-
value | d _i = x _i –
20 | $u_i = (x_i - 20)/8$ | f _i | f _i u _i | |-------------------|---------------|---|----------------------|----------------|-------------------------------| | 0-8 | 4 | -16 | -2 | 6 | -12 | | 8-16 | 12 | -8 | -1 | 7 | -7 | | 16-24 | 20 | 0 | 0 | 10 | 0 | | 24-32 | 28 | 8 | 1 | 8 | 8 | | 32-40 | 36 | 16 | 2 | 9 | 18 | | | | | | N = 40 | Sum = 7 | We have A = 20, h = 8 Mean= A + h (sum/N) = 20 + 8 (7/40) = 20 + 1.4 = 21.4 8. | Class | 0 – 6 | 6 - 12 | 12 - | |------------|---------|---------|---------| | interval: | 18 | 18 - 24 | 24 - 30 | | Frequency: | 7
10 | 5
12 | 6 | **Soln**: Let the assumed mean be (A) = 15 | Class
interval | Mid –
value | d _i = x _i -
15 | u _i = (x _i -
15)/6 | Frequency
f _i | f _i u _i | |-------------------|----------------|---|---|-----------------------------|-------------------------------| | 0 – 6 | 3 | -12 | -2 | -1 | -14 | | 6 – 12 | 9 | -6 | -1 | 5 | -5 | | | | | | | | | 12 – 18 | 15 | 0 | 0 | 10 | 0 | |---------|----|----|---|--------|---------| | 18 – 24 | 21 | 6 | 1 | 12 | 12 | | 24 – 30 | 27 | 12 | 2 | 6 | 12 | | | | | | N = 40 | Sum = 5 | We have $$A = 15, h = 6$$ Mean = A + h(sum/N) $$= 15 + 6 (5/40)$$ 9. | Class interval: | 0 – 10 | 10 - 20 | 20 - | |-----------------|---------|----------|---------| | | 30 | 30 - 40 | 40 - 50 | | Frequency: | 9
15 | 12
10 | 14 | **Soln**: Let the assumed mean (A) = 25 | Class
interval | Mid –
value | d _i = x _i -
25 | $u_i = (x_i - 25)/10$ | Frequency
f _i | f _i u _i | |-------------------|----------------|---|-----------------------|-----------------------------|-------------------------------| | 0 – 10 | 5 | -20 | -2 | 9 | -18 | | 10 – 20 | 15 | -10 | -1 | 10 | -12 | | 20 – 30 | 25 | 0 | 0 | 15 | 0 | | 30 – 40 | 35 | 10 | 1 | 10 | 10 | | 40 – 50 | 45 | 20 | 2 | 14 | 28 | | | | | | N = 60 | Sum = 8 | We have A = 25, h = 10 Mean = A + h(sum/N) $$= 25 + (4/3)$$ = 26.333 10. | Class
interval: | 0-8 | 8-16 | 16-24 | 24-32 | 32-40 | | |--------------------|-----|------|-------|-------|-------|--| | Frequency: | 5 | 9 | 10 | 8 | 8 | | **Soln:** Let the assumed mean (A) = 20 | Class
interval | Mid
value x _i | d _i =
x _i - 20 | u _i = (x _i -
20)/8 | Frequency f _i | f _i u _i | |-------------------|-----------------------------|---|---|--------------------------|-------------------------------| | 0-8 | 4 | -16 | -2 | 5 | -10 | | 8-16 | 12 | -8 | -1 | 9 | -9 | | 16-24 | 20 | 0 | 0 | 10 | 0 | | 24-32 | 28 | 8 | 1 | 8 | 8 | | 32-40 | 36 | 16 | 2 | 8 | 16 | | | | | | N = 40 | Sum = 5 | We have, Mean = A + h (sum/N) #### 11. | Class
interval: | 0-8 | 8-16 | 16-24 | 24-32 | 32-40 | | |--------------------|-----|------|-------|-------|-------|--| | Frequency: | 5 | 6 | 4 | 3 | 2 | | **Soln**: Let the assumed mean (A) = 20 | Class
interval | Mid
value x _i | d _i =
x _i – 20 | u _i = (x _i -
20)/8 | Frequency f _i | f _i u _i | |-------------------|-----------------------------|---|---|--------------------------|-------------------------------| | 0-8 | 4 | -16 | -2 | -2 | -10 | | 8-16 | 12 | -8 | -1 | -1 | -6 | | 16-24 | 20 | 0 | 0 | 0 | 0 | | 24-32 | 28 | 8 | 1 | 1 | 3 | | 32-40 | 36 | 16 | 2 | 2 | 4 | | | | | | N = 20 | Sum =
-9 | We have, $$A = 20, h = 8$$ Mean = A + h (sum/N) $$=20-(72/20)$$ $$= 20 - 3.6$$ = 16.4 ### **12.** | Class
interval: | 10-30
130 | 30-50 | 50-70 | 70-90 | 90-110 110 |)- | |--------------------|--------------|-------|-------|-------|------------|----| | Frequency: | 5
2 | 8 | 12 | 20 | 3 | | **Soln**: Let the assumed mean (A) = 60 | Class
interval | Mid
value
x _i | d _i =
x _i – 60 | u _i = (x _i -60)/20 | Frequency
f _i | f _i u _i | |-------------------|--------------------------------|---|--|-----------------------------|-------------------------------| | 10 – 30 | 20 | -40 | -2 | 5 | -10 | | 30 – 50 | 40 | -20 | -1 | 8 | -8 | | 50 – 70 | 60 | 0 | 0 | 12 | 0 | | | | | | | | | 70 – 90 | 80 | 20 | 1 | 20 | 20 | |--------------|-----|----|---|--------|----------| | 90 – 110 | 100 | 40 | 2 | 3 | 6 | | 110 –
130 | 120 | 60 | 3 | 2 | 6 | | | | | | N = 50 | Sum = 14 | We have A = 60, h = 20 Mean = A + h (sum/N) = 60 + 20 (14/5) = 60 + 5.6 = 65.6 13. | Class interval: | 25-35 35-45 45-55 55-
65 65-75 | |-----------------|-----------------------------------| | Frequency: | 6 10 8
10 4 | **Soln:** Let the assumed mean (A) = 50 | Class
interval | Mid
value x _i | d _i = x _i – 50 | u _i = (x _i – 50)/ 10 | Frequency
f _i | f _i u _i | |-------------------|-----------------------------|--------------------------------------|--|-----------------------------|-------------------------------| | 25 – 35 | 30 | -20 | -2 | 6 | -12 | | 35 – 45 | 40 | -10 | -1 | 10 | -10 | | 45 – 55 | 50 | 0 | 0 | 8 | 0 | | 55 – 65 | 60 | 10 | 1 | 12 | 12 | | 65 – 75 | 70 | 20 | 2 | 4 | 8 | | | | | | N = 40 | Sum = -2 | We have $$A = 50, h = 10$$ Mean = A + h (sum/N) $$= 50 - 0.5$$ = 49.5 #### 14. | Class interval: | 25-29
54 5 | 30-34
5-59 | 35-39 | 40-44 | 45-49 | 50- | |-----------------|---------------|---------------|-------|-------|-------|-----| | Frequency: | 14
3 | 22
4 | 16 | 6 | 5 | | **Soln**: Let the assumed mean (A) = 42 | Class
interval | Mid
value x _i | d _i = x _i –
42 | u _i = (x _i – 42)/ 5 | Frequency
f _i | f _i u _i | |-------------------|-----------------------------|---|---|-----------------------------|-------------------------------| | 25 – 29 | 27 | -15 | -3 | 14 | -42 | | 30 – 34 | 32 | -10 | -2 | 22 | -44 | | 35 – 39 | 37 | -5 | -1 | 16 | -16 | | 40 – 44 | 42 | 0 | 0 | 6 | 0 | | 45 – 49 | 47 | 5 | 1 | 5 | 5 | | 50 – 54 | 52 | 10 | 2 | 3 | 6 | | 55 – 59 | 57 | 15 | 3 | 4 | 12 | | | | | | N = 70 | Sum = -79 | We have $$A = 42, h = 5$$ Mean = A + h (sum/N) $$= 42 + 5 (-79/70)$$ $$= 42 - 79/14$$ ### 15. For the following distribution, calculate mean using all suitable methods: | Size of item: | 1 – 4 | 4 – 9 | 9 – 16 | 16 – 20 | |---------------|-------|-------|--------|---------| | Frequency: | 6 | 12 | 26 | 20 | Soln: By direct method | Class interval | Mid value x _i | Frequency f _i | f _i x _i | |----------------|--------------------------|--------------------------|-------------------------------| | 1 – 4 | 2.5 | 6 | 15 | | 4 – 9 | 6.5 | 12 | 18 | | 9 – 16 | 12.5 | 26 | 325 | | 16 – 27 | 21.5 | 20 | 430 | | | | N = 64 | Sum = 848 | Mean = (sum/N) + A = 848/64 = 13.25 By assuming mean method Let the assumed mean (A) = 65 | Class
interval | Mid value
x _i | $u_i = (x_i - A) = x_i - 65$ | Frequency f _i | f _i u _i | |-------------------|-----------------------------|------------------------------|--------------------------|-------------------------------| | 1 – 4 | 2.5 | -4 | 6 | -25 | | 4 – 9 | 6.5 | 0 | 12 | 0 | | 9 – 16 | 12.5 | 6 | 26 | 196 | | 16 – 27 | 21.5 | 15 | 20 | 300 | | | | | N = 64 | Sum = 432 | Mean = A + sum/N # 16.The weekly observation on cost of living index in a certain city for the year 2004 – 2005 are given below. Compute the weekly cost of living index. | Cost of living index | Number of students | Cost of living index | Number of students | |----------------------|--------------------|----------------------|--------------------| | 1400 – 1500 | 5 | 1700 – 1800 | 9 | | 1500 – 1600 | 10 | 1800 – 1900 | 6 | | 1600 – 1700 | 20 | 1900 – 2000 | 2 | **Soln**: Let the assumed mean (A) = 1650 | Class
interval | Mid
value
x _i | $d_i = x_i - A$ $= x_i - A$ $= 1650$ | u _i = <u>(x_i</u>
<u>1650)</u>
100 | Frequency
f _i | f _i u _i | |-------------------|--------------------------------|--------------------------------------|---|-----------------------------|-------------------------------| | 1400 —
1500 | 1450 | -200 | -2 | 5 | -10 | | 1500 —
1600 | 1550 | -100 | -1 | 10 | -10 | | 1600 —
1700 | 1650 | 0 | 0 | 20 | 0 | | 1700 –
1800 | 1750 | 100 | 1 | 9 | 9 | | 1800 –
1900 | 1850 | 200 | 2 | 6 | 12 | | 1900 –
2000 | 1950 | 300 | 3 | 2 | 6 | | | | | | N = 52 | Sum = 7 | We have $$A = 16, h = 100$$ Mean = A + h (sum/N) = 1650 + 100 (7/52) = 1650 + (175/13) = 21625/13 = 1663.46 # 17. The following table shows the marks scored by 140 students in an examination of a certain paper: | Marks: | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | |---------------------|------|-------|-------|-------|-------| | Number of students: | 20 | 24 | 40 | 36 | 20 | Calculate the average marks by using all the three methods: direct method, assumed mean deviation and shortcut method. **Soln:** (i) Direct method: | Class interval | Mid value x _i | Frequency f _i | f _i x _i | |----------------|--------------------------|--------------------------|-------------------------------| | 0 – 10 | 5 | 20 | 100 | | 10 – 20 | 15 | 24 | 360 | | 20 – 30 | 25 | 40 | 1000 | | 30 – 40 | 35 | 36 | 1260 | | 40 – 50 | 45 | 20 | 900 | | | | N = 140 | Sum = 3620 | Mean = sum/ N = 3620/140 = 25.857 (ii)Assumed mean method: Let the assumed mean = 25 Mean = A + (sum/N) | Class
interval | Mid value
x _i | $u_i = (x_i - A)$ | Frequency f _i | f _i u _i | |-------------------|-----------------------------|-------------------|--------------------------|-------------------------------| | | | | | | | 0 – 10 | 5 | -20 | 20 | -400 | |---------|----|-----|---------|--------------| | 10 – 20 | 15 | -10 | 24 | -240 | | 20 – 30 | 25 | 0 | 40 | 0 | | 30 – 40 | 35 | 10 | 36 | 360 | | 40 – 50 | 45 | 20 | 20 | 400 | | | | | N = 140 | Sum =
120 | Mean = A + (sum/N) = 25 + (120/ 140) = 25 + 0.857 = 25.857 (iii)Step deviation method: Let the assumed mean (A) = 25 | Class
interval | Mid
value x _i | $d_{i}=$ $x_{i} - A$ $= x_{i} -$ 25 | u _i = <u>(x_i=</u>
<u>25)</u>
10 | Frequency
f _i | f _i u _i | |-------------------|-----------------------------|---------------------------------------|---|-----------------------------|-------------------------------| | 0 – 10 | 5 | -20 | -2 | 20 | -40 | | 10 – 20 | 15 | -10 | -1 | 24 | -24 | | 20 – 30 | 25 | 0 | 0 | 40 | 0 | | 30 – 40 | 35 | 10 | 1 | 36 | 36 | | 40 – 50 | 45 | 20 | 2 | 20 | 40 | | | | | | N = 140 | Sum =
12 | Mean = A + h(sum/N) = 25 + 10(12/ 140) = 25 + 0.857 = 25.857 # 18. The mean of the following frequency distribution is 62.8 and the sum of all the frequencies is 50. Compute the miss frequency f_1 and f_2 . | Class: | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 100-120 | |------------|--------|----------------|-------|----------------|----------------| | Frequency: | 5
8 | f ₁ | 10 | f ₂ | 7 | #### Soln: | Class interval | Mid value x _i | Frequency f _i | f _i x _i | |----------------|--------------------------|--------------------------|--| | 0 – 20 | 10 | 5 | 50 | | 20 – 40 | 30 | f ₁ | 30f ₁ | | 40 – 60 | 50 | 10 | 500 | | 60 – 80 | 70 | f ₂ | 70f ₂ | | 80 – 100 | 90 | 7 | 630 | | 100 – 120 | 110 | 8 | 880 | | | | N = 50 | Sum =
30f1+70f ₂ +
2060 | Given, sum of frequency = 50 $$5 + f_1 + 10 + f_2 + 7 + 8 = 50$$ $$f_1 + f_2 = 20$$ $$3f_1 + 3f_2 = 60 - (1)$$ [multiply both side by 3] And mean = 62.8 Sum/ N = 62.8 $$(30f1+70f_2+2060)/50=62.8$$ $$30f1+70f_2 = 3140 - 2060$$ $$30f1+70f_2 = 1080$$ $$3f1 + 7f_2 = 108 - (2)$$ [divide it by 10] subtract equation (1) from equation (2) $$3f1 + 7f_2 - 3f_1 - 3f_2 = 108 - 60$$ $$f_2 = 12$$ Put value of f₂ in equation (1) $$3f_1 + 3(12) = 60$$ $$f_1 = 24/3 = 8$$ $$f_1 = 8, f_2 = 12$$ # 19. The following distribution shows the daily pocket allowance given to the children of a multistory building. The average pocket allowance is Rs 18.00. Find out the missing frequency. | Class
interval: | | 13-15
23-25 | 15-17 | 17-19 | 19-21 | 21- | |--------------------|--------|----------------|-------|-------|-------|-----| | Frequency: | 7
5 | 6
4 | 9 | 13 | _ | | Soln: Given mean = 18, Let the missing frequency be $\boldsymbol{\nu}$ | Class interval | Mid value x _i | Frequency f _i | f _i x _i | |----------------|--------------------------|--------------------------|-------------------------------| | 11 – 13 | 12 | 7 | 84 | | 13 – 15 | 14 | 6 | 88 | | 15 – 17 | 16 | 9 | 144 | | 17 – 19 | 18 | 13 | 234 | | 19 – 21 | 20 | x | 20x | | 21 – 23 | 22 | 5 | 110 | | 23 – 25 | 14 | 4 | 56 | | | | N =44 + x | Sum = 752 + 20x | Mean = sum/ N $$18 = 752 + 20 \times 44 + x \frac{752 + 20 x}{44 + x}$$ $$792 + 18x = 752 + 20x$$ $2x = 40$ $$x = 20$$ ### 20.If the mean of the following distribution is 27. Find the value of p. | Class: | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | | |------------|------|-------|-------|-------|-------|--| | Frequency: | 8 | p | 12 | 13 | 10 | | #### Soln: | Class interval | Mid value x _i | Frequency f _i | f _i x _i | |----------------|--------------------------|--------------------------|-------------------------------| | 0 – 10 | 5 | 8 | 40 | | 10 – 20 | 15 | Р | 152 | | 20 – 30 | 25 | 12 | 300 | | 30 – 40 | 35 | 13 | 455 | | 40 – 50 | 45 | 16 | 450 | | | | N = 43 + P | Sum = 1245
+ 15p | Given mean =27 Mean = sum/ N $$1245+15p43+p \frac{1245+15p}{43+p} = 27$$ $$1245 + 15p = 1161 + 27p$$ $$12p = 84$$ $$P = 7$$ # 21.In a retail market, fruit vendors were selling mangoes kept in packing boxes. These boxes contain varying number of mangoes. The following was the distribution of mangoes according to the number of boxes. | Number of mangoes: | 50-52 | 53-55 | 56-58 | 59-61 | 62-64 | | |--------------------|-------|-------|-------|-------|-------|--| | | | | | | | | | Number of boxes: | 15 | 110 | 135 | 115 | 25 | |------------------|----|-----|-----|-----|----| | вохсо. | | | | | | # Find the mean number of mangoes kept in packing box. Which method of finding the mean did you choose? #### Soln: | Number of mangoes | Number of boxes (f _i) | |-------------------|-----------------------------------| | 50 – 52 | 15 | | 53 – 55 | 110 | | 56 – 58 | 135 | | 59 – 61 | 115 | | 62 – 64 | 25 | We may observe that class internals are not continuous There is a gap between two class intervals. So we have to add $\frac{1}{2}$ from lower class limit of each interval and class mark (x_i) may be obtained by using the relation $$x_i$$ = upperlimit+lowerclasslimit2 $\frac{\text{upperlimit+lowerclasslimit}}{2}$ Class size (h) of this data = 3 Now taking 57 as assumed mean (a) we may calculated $d_i \ , u_i, \ f_i u_i as$ follows | Class
interval | Frequency
f _i | Mid
value x _i | $d_{i}=$ $x_{i} - A$ $= x_{i} -$ 25 | u _i = <u>(x_i</u> =
<u>25)</u>
10 | f _i u _i | |-----------------------|-----------------------------|-----------------------------|---------------------------------------|--|-------------------------------| | 49.5 –
52.5 | 15 | 51 | -6 | -2 | -30 | | 52.5 –
55.5 | 110 | 54 | -3 | -1 | -110 | | 55.5 –
58.5 | 135 | 57 | 0 | 0 | 0 | | 58.5 –
61.5 | 115 | 60 | 3 | 1 | 115 | | 61.5 –
64.5 | 25 | 63 | 6 | 2 | 50 | | Total | N = 400 | | | Sum = 25 | |-------|---------|--|--|----------| |-------|---------|--|--|----------| Now we have N = 400 Sum = 25 Mean = A + h (sum/N) = 57 + 3 (45/400) = 57 + 3/16 = 57 + 0.1875 = 57.19 Clearly mean number of mangoes kept in packing box is 57.19 #### 22. The table below shows the daily expenditure on food of 25 households in a locality | Daily expenditure (in Rs): | 100-150 | 150-200 | 200- | |----------------------------|---------|---------|---------| | | 250 | 250-300 | 300-350 | | Number of households: | 4
12 | 5
2 | 2 | ## Find the mean daily expenditure on food by a suitable method. **Soln**: we may calculate class mark (x_i) for each interval by using the relation $$x_i$$ = upperlimit+lowerclasslimit2 $\frac{\text{upperlimit+lowerclasslimit}}{2}$ Class size = 50 Now, talking 225 as assumed mean (x_i) we may calculate d_i ,u_i, f_iu_ias follows | Daily
expenditure | Frequency
f _i | Mid
value
x _i | d _i =
x _i –
225 | $u_i = (\underline{x}_{i-1} - \underline{x}_{i-1} \underline{x}_{i-1$ | f _i u _i | |----------------------|-----------------------------|--------------------------------|---|---|-------------------------------| | 100 – 150 | 4 | 125 | -100 | -2 | -8 | | 150 – 200 | 5 | 175 | -50 | -1 | -5 | | 200 – 250 | 12 | 225 | 0 | 0 | 0 | | 250 – 300 | 2 | 275 | 50 | 1 | 2 | |-----------|--------|-----|-----|---|-------------| | 300 – 350 | 2 | 325 | 100 | 2 | 4 | | | N = 25 | | | | Sum
= -7 | Now we may observe that N = 25 Sum = -7 Mean $$\overline{}$$ x=a+(sumN)×h $\overline{}$ = a+($\frac{sum}{N}$) × h 225 + 50 (-7/25) 225 - 14 = 211 So, mean daily expenditure on food is Rs 211 # 23. To find out the concentration of SO_2 in the air (in parts per million i.e ppm) the data was collected for localities for 30 localities in a certain city and is presented below: | Concentration of SO ₂ (in ppm) | Frequency | |---|-----------| | 0.00 - 0.04 | 4 | | 0.04 - 0.08 | 9 | | 0.08 - 0.12 | 9 | | 0.12 - 0.16 | 2 | | 0.16 - 0.20 | 4 | | 0.20 - 0.24 | 2 | ### Find the mean concentration of SO₂ in the air Soln: we may find class marks for each interval by using the relation $$X=$$ upperlimit+lowerclasslimit2 $X=\frac{upperlimit+lowerclasslimit}{2}$ Class size of this data = 0.04 Now taking 0.04 assumed mean (x_i) we may calculate d_i , u_i , f_iu_i as follows | Concentration | Frequency | Class | d _i = | u _i | f _i u _i | |---------------|-----------|-------|------------------|----------------|-------------------------------| | | | | | | | | of SO ₂ | f _i | interval
x _i | x _i —
0.14 | | | |--------------------|----------------|----------------------------|--------------------------|----|--------------| | 0.00 - 0.04 | 4 | 0.02 | -0.12 | -3 | -12 | | 0.04 - 0.08 | 9 | 0.06 | -0.08 | -2 | -18 | | 0.08 - 0.12 | 9 | 0.10 | -0.04 | -1 | -9 | | 0.12 - 0.16 | 2 | 0.14 | 0 | 0 | 0 | | 0.16 - 0.20 | 4 | 0.18 | 0.04 | 1 | 4 | | 0.20 - 0.24 | 2 | 0.22 | 0.08 | 2 | 4 | | Total | N = 30 | | | | Sum
= -31 | From the table we may observe that $$N = 30$$ $$Sum = -31$$ Mean $$\overline{}$$ x=a+(sumN)×h $\overline{}$ = a+($\frac{sum}{N}$) × h $$= 0.14 + (0.04)(-31/30)$$ $$= 0.099 ppm$$ So mean concentration of SO_2 in the air is 0.099 ppm # 24.A class teacher has the following absentee record of 40 students of a class for the whole term. Find the mean number of days a student was absent. | Number of days: | 0-6
28-38 | 6-10
38-40 | 10-14 | 14-20 | 20-28 | |---------------------|--------------|---------------|--------|-------|-------| | Number of students: | 11
4 | 10
3 | 7
1 | 4 | | Soln: We may find class mark of each interval by using the relation $$X=$$ upperlimit+lowerclasslimit2 $X=\frac{\text{upperlimit+lowerclasslimit}}{2}$ Now, taking 16 as assumed mean (a) we may Calculate d_i and f_id_i as follows | Number of days | Number of students f _i | Xi | $d = x_i + 10$ | f _i d _i | |----------------|-----------------------------------|----|----------------|-------------------------------| | 0 – 6 | 11 | 3 | -13 | -143 | | 6 – 10 | 10 | 8 | -8 | -280 | | 10 – 14 | 7 | 12 | -4 | -28 | | 14 – 20 | 7 | 16 | 0 | 0 | | 20 – 28 | 8 | 24 | 8 | 32 | | 28 – 36 | 3 | 33 | 17 | 51 | | 30 – 40 | 1 | 39 | 23 | 23 | | Total | N = 40 | | | Sum =
-145 | Now we may observe that N = 40 Sum= -145 Mean $$\overline{x}$$ =a+(sumN) \overline{x} = a+($\frac{sum}{N}$) = 16 + (-145/40) = 16 - 3.625 = 12.38 So mean number of days is 12.38 days, for which student was absent # 25. The following table gives the literacy rate (in percentage) of 35 cities. Find the mean literacy rate. | Literacy rate (in %): | 45-55 | 55-65 | 65-75 | 75-85 | 85-95 | | |-----------------------|-------|-------|-------|-------|-------|--| | Number of cites: | 3 | 10 | 11 | 8 | 3 | | Soln: We may find class marks by using the relation \mathbf{X} = upperlimit+lowerclasslimit2 \mathbf{X} = $\frac{\text{upperlimit+lowerclasslimit}}{2}$ Class size (h) for this data = 10 ## Now taking 70 as assumed mean (a) wrong ### Calculate d_i ,u_i, f_iu_i as follows | Litracy
rate (in
%) | Number
of cities
(f _i) | Mid
value x _i | d _i = x _i
- 70 | u _i = <u>d</u> _i
50 | f _i u _i | |---------------------------|--|-----------------------------|---|--|-------------------------------| | 45 – 55 | 3 | 50 | -20 | -2 | -6 | | 55 – 65 | 10 | 60 | -10 | -1 | -10 | | 65 – 75 | 11 | 70 | 0 | 0 | 0 | | 75 – 85 | 8 | 80 | 10 | 1 | 8 | | 85 – 95 | 3 | 90 | 20 | 2 | 6 | | Total | N = 35 | | | | Sum = -2 | Now we may observe that $$N = 35$$ Sum = -2 Mean $$\overline{x}$$ =a+(sumN)×h \overline{x} = a+($\frac{sum}{N}$) × h $$= 70 + (-2/35)$$ $$= 70 - 4/7$$ $$= 70 - 0.57$$ So, mean literacy rate is 69.43 %