Exercise 1B

Answer.1.

Denominator of $\frac{13}{80}$ is 80 i)

And. $80 = 2^4 \times 5^1$

80 has no prime factor other than 2 and 5

∴ it is a terminating decimal

Denominator of $\frac{7}{24}$ is 24 And, $24 = 2^3 \times 3^1$ ii)

24 has prime factor 3 which is other than 2 and 5

- ∴ it is not a terminating decimal
- Denominator of $\frac{5}{12}$ is 12 And, $12 = 2^2 \times 3^1$ iii)

12 has prime factor 3 which is other than 2 and 5

- ∴ it is not a terminating decimal
- Denominator of $\frac{31}{375}$ is 375 And, 375 = 5³ × 3¹ iv)

375 has prime factor 3 which is other than 2 and 5

- ∴ it is not a terminating decimal
- Denominator of $\frac{16}{125}$ is 125 v)

And. $125 = 5^3$

125 has prime factor only 5 which is other than 2 and 5

∴ it is not a terminating decimal

Answer2.

 $\frac{5}{8} = 0.625$, i)

It is terminating decimal because it ends after a finite number of digits.

 $\frac{7}{25} = 0.28$, ii)

It is terminating decimal because it ends after a finite number of digits.

 $\frac{3}{11}=0.\overline{27},$ iii)

It is non terminating decimal because it doesn't end after a finite number of digits.

 $\frac{5}{13} = 0.\overline{384615}$ iv)

It is non terminating decimal because it doesn't end after a finite number of digits.

v)
$$\frac{11}{24} = 0.458\overline{3}$$

It is non terminating decimal because it doesn't end after a finite number of digits.

vi)
$$\frac{261}{400} = 0.6525$$

It is terminating decimal because it ends after a finite number of digits.

vii)
$$\frac{231}{625} = 0.3696$$

It is terminating decimal because it ends after a finite number of digits.

viii)
$$2\frac{5}{12} = \frac{29}{12} = 2.41\overline{6}$$

It is non terminating decimal because it doesn't end after a finite number of digits.

Answer.3.

i) Let
$$x = 0.\overline{2}$$

Then,
$$x = 0.222$$
 (i)

Since repeating block has only one digit 2, we multiply its 10 which is

$$10x = 2.222$$
 (ii)

Subtract (ii) - (i)

$$9x = 2$$

So,
$$x = \frac{2}{9}$$

ii) Let
$$x = 0.\overline{53}$$

Then,
$$x = 0.5353$$
 (i)

Since repeating block has only two digits, we multiply its 100 which is

$$100x = 59.5353$$
 (ii)

Subtract (ii) - (i)

$$99x = 53$$

So,
$$x = \frac{53}{99}$$

iii) Let
$$x = 2.\overline{93}$$

Then,
$$x = 2.9393$$
 (i)

Since repeating block has only 2digit, we multiply its 100 which is

$$100x = 293.9393$$
 (ii)

$$99x = 291$$

So,
$$x = \frac{291}{99}$$
 or $\frac{97}{33}$

iv) Let
$$x = 18.\overline{48}$$

Then,
$$x = 18.4848$$
 (i)

Since repeating block has only digit 2, we multiply its 100 which is

$$100x = 1848.4848$$
 (ii)

$$99x = 1830$$

So,
$$x = \frac{1830}{99}$$
 or $\frac{610}{33}$

- v) Let $x = 0.\overline{235}$ Then, x = 0.235235 (i) Since repeating block has only 3 digits, we multiply its 1000 which is 1000x = 235.235235 (ii) Subtract (ii) – (i) 909x = 235 So, $x = \frac{235}{999}$
- vi) Let $x = 0.00\overline{32}$ Then, x = 0.003232 (i) Since repeating block has only 2 digits, we multiply its 100 which is 10000x = 32.3232 (ii) Subtract (ii) – (i) 9999x = 32.32So, $x = \frac{32.32}{9999} = \frac{3232}{999900} = \frac{8}{2475}$
- vii) Let $x = 1.3\overline{23}$ Then, x = 1.32323 (i) Since repeating block has only 2digit , we multiply its 100 which is 100x = 132.32323 (ii) Subtract (ii) (i) 99x = 131 So, $x = \frac{131}{99}$
- viii) Let $x = 0.3\overline{178}$ Then, x = 0.3178178 (i) Since repeating block has only 3digit , we multiply its 100 which is 1000x = 317.8178 (ii) Subtract (ii) – (i) 999x = 317.5So, $x = \frac{317.5}{9990} = \frac{3175}{9990} = \frac{635}{1998}$
- ix) Let $x = 32.12\overline{35}$ Then, x = 32.1235 (i) Since repeating block has only 2digit, we multiply its 100 which is 100x = 3212.3535 (ii) Subtract (ii) – (i) 99x = 3180.23So, $x = \frac{3180.23}{99}$ or $\frac{318023}{9900}$
- x) Let $x = 0.40\overline{7}$ Then, x = 0.407 (i) Since repeating block has only one digit , we multiply its 10 which is 10x = 4.077 (ii)

Subtract (ii) – (i)

$$9x = 3.67$$

So, $x = \frac{3.67}{9}$ or $\frac{367}{900}$

Answer4.

Let
$$x = 2.\overline{36}$$

Then,
$$x = 2.3636$$
 (i) Since repeating block has only 2 digits, we multiply its 100 which is $100x = 236.3636$ (ii) Subtract (ii) – (i) $99x = 234$ So, $x = \frac{234}{99}$ Let $y = 0.\overline{23}$ Then, $y = 0.2323$ (i) Since repeating block has only 2 digits, we multiply its 100 which is $100y = 23.2323$ (ii) Subtract (ii) – (i) $99y = 23$ So, $y = \frac{23}{99}$ So, $y = \frac{23}{99}$ $x + y = \frac{234}{99} + \frac{23}{99} = \frac{257}{99}$

Answer.5.

Let
$$x=0.\overline{38}$$

Then, $x=0.3838$ (i)

Since repeating block has only 2 digits, we multiply its 100 which is $100x=38.3838$ (ii)

Subtract (ii) – (i)

 $99x=38$

So, $x=\frac{38}{99}$

Let $y=1.\overline{27}$

Then, $y=1.2727$ (i)

Since repeating block has only 2 digits, we multiply its 100 which is $100x=127.2727$ (ii)

Subtract (ii) – (i)

 $99x=126$

So, $x=\frac{126}{99}$
 $\frac{38}{99}+\frac{126}{99}=\frac{164}{99}$ which is in form $\frac{p}{q}$