POLYNOMIALS - CHAPTER 2

EXERCISE 2A

Answer 1:

(i) $x^5 - 2x^3 + x + \sqrt{3}$ is an expression having only non-negative integral powers of *x*. So, it is a polynomial. Also, the highest power of *x* is 5, so, it is a polynomial of degree 5.

(ii) $y^3 + \sqrt{3}y$ is an expression having only non-negative integral powers of *y*. So, it is a polynomial. Also, the highest power of *y* is 3, so, it is a polynomial of degree 3.

(iii) $t^2 - \frac{2}{5}t + \sqrt{5}$ is an expression having only non-negative integral powers of *t*. So, it is a polynomial. Also, the highest power of *t* is 2, so, it is a polynomial of degree 2.

(iv) $x^{100} - 1$ is an expression having only non-negative integral power of *x*. So, it is a polynomial. Also, the highest power of *x* is 100, so, it is a polynomial of degree 100.

(v) $\frac{1}{\sqrt{2}}x^2 - \sqrt{2}x + 2$ is an expression having only non-negative integral powers of *x*. So, it is a polynomial. Also, the highest power of *x* is 2, so, it is a polynomial of degree 2.

(vi) $x^{-2} + 2x^{-1} + 3$ is an expression having negative integral powers of *x*. So, it is not a polynomial.

(vii) Clearly, 1 is a constant polynomial of degree 0.

(viii) Clearly, $-\frac{3}{5}$ is a constant polynomial of degree 0.

 $(ix)\frac{x^2}{2} - 2x^2 = \frac{x^2}{2} - 2x^{-2}$

This is an expression having negative integral power of *x* i.e. -2. So, it is not a polynomial.

(x) $\sqrt[3]{2x^2} - 8$ is an expression having only non-negative integral power of *x*. So, it is a polynomial. Also, the highest power of *x* is 2, so, it is a polynomial of degree 2.

(xi) $\frac{1}{2x^2} = \frac{1}{2}x^{-2}$ is an expression having negative integral power of *x*. So, it is not a polynomial.

(xii) $\frac{1}{\sqrt{5}} x^{\frac{1}{2}} + 1$

In this expression, the power of x is $\frac{1}{2}$ which is a fraction. Since it is an expression having fractional power of x, so, it is not a polynomial.

(xiii) $\frac{3}{5}x^2 - \frac{7}{3}x + 9$ is an expression having only non-negative integral powers of *x*. So, it is a polynomial. Also, the highest power of *x* is 2, so, it is a polynomial of degree 2.

(xiv)
$$x^4 - x^{\frac{3}{2}} + x - 3$$

CLASS IX

RS Aggarwal

In this expression, one of the powers of x is $\frac{3}{2}$ which is a fraction. Since it is an expression having fractional power of *x*, so, it is not a polynomial.

(xv) $2x^3 + 3x^2 + \sqrt{x} - 1 = 2x^3 + 3x^2 + x^{\frac{1}{2}} - 1$ In this expression, one of the powers of x is $\frac{1}{2}$ which is a fraction. Since it is an expression having fractional power of x, so, it is not a polynomial.

Answer 2:

- (i) -7 + *x* is a polynomial with degree 1.it is a linear polynomial.
- (ii) 6*y* is a polynomial with degree 1.it is a linear polynomial.
- (iii) $-z^3$ is a polynomial with degree 3. it is a cubic polynomial.
- (iv) $1 y y^{\beta}$ is a polynomial with degree 3. it is a cubic polynomial.
- (v) $x x^3 + x^4$ is a polynomial with degree 4. it is a quartic polynomial.
- (vi) $1 + x + x^2$ is a polynomial with degree 2. it is a quadratic polynomial.
- (vii) $-6x^2$ is a polynomial with degree 2. it is a quadratic polynomial.
- (viii) -13 is a polynomial with degree 0.it is a constant polynomial.
- (ix) -p is a polynomial with degree 1.it is a linear polynomial.

ANSWER 3. i) In $x + 3x^2 - 5x^3 + x^4$ the coefficient of x^3 is -5.

- ii) In $\sqrt{3} 2\sqrt{2x} + 6x^2$ the coefficient of x is $-2\sqrt{2}$.
- iii) $2x 3 + x^3$ can be written as $x^3 + 0x^2 + 2x 3$. In $x^3 + 0x^2 + 2x - 3$ the coefficient of x^2 is 0.
- iv) In $\frac{3}{8}x^2 \frac{2}{7}x + \frac{1}{6}$ the coefficient of x is $-\frac{2}{7}$.
- v) $\ln \frac{\pi}{2} x^2 + 7x \frac{2}{5}\pi$ the constant term is $-\frac{2}{5}\pi$.

ANSWER 4. i) $\frac{4x - 5x^2 + 6x^3}{2x}$

We can write it separately as = $\frac{4x}{2x} - \frac{5x^2}{2x} + \frac{6x^3}{2x}$

On further simplification we get = $2 - \frac{5}{2}x + 3x^2$ The degree of given expression is 2.

ii) y² (y - y³)

By multiplying the terms We get

 $= y^3 - y^5$ The degree of the given expression is 5.

iii) $(3x-2)(2x^3 + 3x^2)$

By multiplying the terms We get

 $6x^4 + 9x^3 - 4x^3 - 6x^2$

On further simplification

 $= 6x^4 + 5x^3 - 6x^2$ The degree of the given expression is 4.

iv)
$$-\frac{1}{2}x + 3$$

The degree of the given expression is 1.

v) -8

The given expression is a constant polynomial of degree is zero .

vi)
$$x^{-2}(x^4 + x^2)$$

By taking common terms out $= x^{-2} \cdot x^2 (x^2 + 1)$

On further simplification

$$=x^{-2+2}(x^{2}+1)$$

So we get

$$= x^{0}(x^{2} + 1)$$

 $= x^{2} + 1$

The degree of the expression is 2.

ANSWER 5. i) Example of a monomial of degree 5 is $4x^5$.

ii) Example of a binomial of degree 8 is $x - 4x^8$.

iii) Example of a trinomial of degree 4 is $1 + 3x + x^4$.

iv) Example of a monomial of degree 0 is 1.

ANSWER 6. i) $x - 2x^2 + 8 + 5x^3$ in standard form is written as $5x^3 - 2x^2 + x + 8$.

ii) $\frac{2}{3}$ + 4y² - 3y + 2y³ in standard form is written as 2y³ + 4y² - 3y + $\frac{2}{3}$.

iii) $6x^3 + 2x - x^5 - 3x^2$ in standard form is written as $-x^5 + 6x^3 - 3x^2 + 2x$.

iv) $2 + t - 3t^3 + t^4 - t^2$ in standard form is written as $t^4 - 3t^3 - t^2 + t + 2$.

EXERCISE-2B