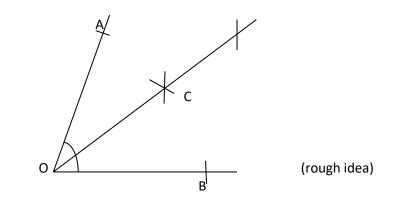

GEMETRICAL CONSTRUCTION - CHAPTER- 13

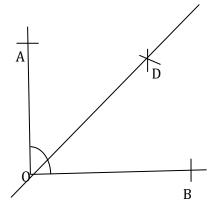
EXERCISE 13


ANSWER1

- (i) Draw a line segment 5.6 AB
- (ii) Suppose with A as centre and a radius equal to more than half of AB, draw 2 arcs , one below the AB & one above the AB.
- (iii) Suppose with B as centre and same radius , draw 2 arcs , cutting the previously drawn arcs at points O and N respectively
- (iv) Join ON, intersecting AB at a C. then ON is the required perpendicular bisector of AB at point C.

On measuring we get , CA = 2.8 and CD = 2.8 Also. Right angle \triangle $\angle ACO = \angle BCO = 90^{\circ}$

ANSWER2



- (i) Draw a line OB
- (ii) With taking center as 0, with the help protractor draw arc at 80°
- (iii) Now taking O as center , using of compass draw an intersecting arc at C.
- (iv) Draw a straight line to join OC. Here, $\angle AOB = 80^{\circ}$

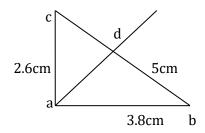
After bisection of $\angle O$, we get the $1/2\angle O = 40^{\circ}$ $\angle AOC = \angle BOC = 40^{\circ}$

ANSWER3

- (i) Draw a line OB
- (ii) With taking center as 0, with the help protractor draw arc at 90°
- (iii) Now taking 0 as center , using of compass draw an intersecting arc at D.
- (iv) Draw a straight line to join, OD , here angle is equally divided into 2 parts So, $\angle AOB = 90^{\circ}$ $1/2\angle AOB = 45^{\circ}$

ANSWER4

Construct angles should be down by ruler and compasses.


ANSWER5

Rough idea

In \triangle ABC, Given BC = 5cm, AB = 3.8cm, AC = 2.6cm

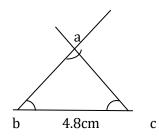
- (i) Draw a line segment AB = 3.8 cm
- (ii) With A as center draw radius of 2.6 at point C draw an arc
- (iii) With B as centre draw line of radius of 5cm, draw another arc cut the previous one.
- (iv) Join AC, BC, Then $\triangle ABC$ is the required.
- (v) Clearly, the opp angle is the largest one, so $\angle B$ is the largest one.
- (vi) So, we draw BD , the bisector of $\angle B$.

On measuring we find that $\angle ABD = \angle CBD = 20^{\circ}$

CLASS IX

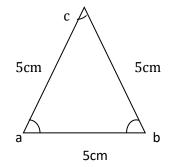
ANSWER6

Rough idea


- (i) Draw line segment BC = 4.8cm (base of the triangle)
- (ii) With B as center draw an angle of 45° as given $\angle B = 45^{\circ}$
- (iii) With c as center draw an angle of 75° as given $\angle C = 75^{\circ}$
- (iv) So, there is point where both angle is intersect each other, that point will be A or A°.
- (v) Join lines to make $\triangle ABC$.

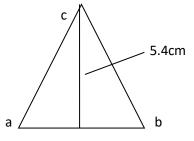
As we know that , sum of the all angles of a triangle be 180°

 $\angle A + \angle B + \angle C = 180$


$$\angle A + 45 + 75 = 180$$

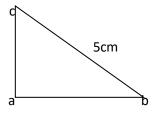
$$\angle A = 180 - 45 - 75$$

 $\angle A = 60^{\circ}$


ANSWER7

- (i) Draw a line AB of radius of 5cm (given)
- (ii) With A as centre draw an arc at C of radius 5cm.
- (iii) With B as centre draw an arc at C of radius 5cm
- (iv) Join all the point We get △ABCAll the angles will be 60°

ANSWER8


- (i) Draw a line AB. (suppose)
- (ii) With A as centre draw an arc at C.
- (iii) With B as centre draw an arc at C.
- (iv) On line AB \perp CD, where CD = 5.4cm So, AD = DB and AC = CB

CLASS IX

ANSWER9

- (i) Draw a line of length 4.5cm as AB△
- (ii) With as centre A draw 90° angle to C.
- (iii) With as centre B draw hypotenuse of 5cm at C.
- (iv) Join, AC and BC.

ANSWER10

given, In $\triangle ABC$, BC=4.5cm, $\angle B$ = 45° and AB+AC = 8cm. \therefore (AB +AC)< BC Thus, the sum of two sides of the triangle is not greater than the third side. Hence, the construction of $\triangle ABC$ is not possible.

ANSWER11

Given, In $\triangle ABC$ AB =5.8cm, $\angle B$ = 60° and BC+CA = 8.4cm \therefore (BC +CA) >AC Thus, the sum of two sides of the triangle is not greater than the third side. Hence, the construction of $\triangle ABC$ is possible.

ANSWER12

Given, In $\triangle ABC$ BC=6cm, $\angle B$ = 30° and AB-AC=3.5cm \therefore (AB +AC)> BC Thus, the difference of two sides of the triangle is not less than the third side. Hence, the construction of $\triangle ABC$ is not possible.

ANSWER13

In given $\triangle ABC$ $AB=5cm, \angle A=30^{\circ}$, AC-BC = 2.5cm \therefore (AC -BC)< AB Thus, the difference of two sides of the triangle is not less than the third side. Hence, the construction of $\triangle ABC$ is not possible.

ANSWER14

- (i) Draw a line segment XY= 12cm
- (ii) Draw a ray XZ, making an actue angle with XY and drawn in the downward direction.
- (iii) From x, set off (3+2+4)=9 equal distances along XZ.
- (iv) Mark points L, M,N on XZ such that XL=3 Units, LM = 3 units and MN = 4 units
- (v) Join NY
- (vi) Draw LB||NY and MC||NY, cutting XY at B and C respectively,
- (vii) With B as centre and radius CY draw another arc, cutting the previous arc at A.
- (viii) Join AB and AC.

CLASS IX

Then, $\triangle ABC$ is required triangle.

Verification: On measuring , we find that AB= 4.5cm, BC= 3cm, CA = 6cm ∴ AB:BC:CA = 9/2:3:6 = 9:6:12 = 3:2:4

ANSWER15

- (i) Draw a line segment = 10.4cm
- (ii) Make $\angle PQR = 45^{\circ}$ and $\angle PQS = 120^{\circ}$
- (iii) Draw the bisectors of $\angle QPR$ and $\angle PQS$ to meet A.
- (iv) Draw the perpendicular bisectors of PA and QA to meet PQ at B and C resp.
- (v) Join AB and ACThen, △ABC is the required triangle.

ANSWER16

- (i) Draw a line segment = 11.6cm
- (ii) Make $\angle PQR = 45^{\circ}$ and $\angle PQS = 60^{\circ}$
- (iii) Draw the bisectors of $\angle QPR$ and $\angle PQS$ to meet A.
- (iv) Draw the perpendicular bisectors of PA and QA to meet PQ at B and C resp.
- (v) Join AB and ACThen, △ABC is the required triangle.

ANSWER17

(i) given, $In \triangle ABC$,

AB=6cm, $\angle A$ = 40° and BC+AC = 5.8cm.

∴ (BC+AC)<AB

Thus, the sum of two sides of the triangle is not greater than the third side. Hence, the construction of \triangle ABC is not possible

(ii) In given △ABC

AB=7cm, ∠A=50°, BC-AC = 2.5cm \therefore (BC-AC)< AB

Thus, the difference of two sides of the triangle is not less than the third side. Hence, the construction of \triangle ABC is not possible.

(iii) In given $\triangle ABC$, BC = 5cm and $\angle A = 60^\circ$, $\angle B = 80^\circ$, $\angle C = 50^\circ$ As we know that sum of all the angles will be 180° So, $\angle A + \angle B + \angle C \le 180^\circ$ $60 + 80 + 50 \le 180$ $190 \le 180$ Hence, the construction of $\triangle ABC$ is not possible

(iv) Here, (AB +BC) =(4+3) and AC= 7cm..... (given) ∴(AB+BC)= AC

Thus, the sum of two sides is not greater than the third side. Hence, the construction of \triangle ABC is not possible.

ANSWER18

We can also think as $67.5 = \frac{1}{2} \times 135$ $=\frac{1}{2} \times (90 + 45)$

ANSWER19

- (i) Draw a line of 4cm on line segment AB
- (ii) With A as centre draw a arc of 4cm at point C i.e perpendicular on point A.
- (iii) With B as centre draw a arc of 4cm at point D i.e perpendicular on point B
- (iv) With C as centre draw a arc of 4cm point D. which intersection at same distance at D point
- (v) Join all the lines AC,CD,BD

ANSWER20

- (i) Draw a line segment BC= 3.5cm
- (ii) Construct $\angle CBX = 90^{\circ}$
- (iii) From B, set off 5.5cm
- (iv) Join CD
- (v) Draw the penpendicular bisector of CD, intersecting BD at A.
- (vi) Join AC

Then, $\triangle ABC$ is the required right triangle.

Verification, On measuring , we find that AC+BC = 5.5cm

ANSWER21

Given, in $\triangle ABC \angle B = 45^{\circ} \angle C = 60^{\circ}$ and the \perp from the vertex A to base BC is 4.5cm

- (i) Draw a line segment PQ
- (ii) From any point D on line PQ , we draw $DE \perp PQ$
- (iii) Cut off DA =4.5cm along DE.
- (iv) Through A draw LM || PQ.
- (v) Construct ∠LAB=45° and ∠MAC = 60°, Meeting PQ at B and C respevtively. Then, △ABC is required triangle.

CLASS IX