EXERCISE 12B

ANSWER1

- (i) Given 0 is the centre $AO = OC, \angle BAO = 40^{\circ}, \angle OCB = 30^{\circ}$ Join OB Here, OA =OB Then, $\angle BAO = \angle OBA = 40^{\circ}$ Also, OC =OB $\angle OCB = \angle BCO = 30^{\circ}$ $\therefore \angle ABC = \angle ABO + \angle OBC$ $= (40^{\circ} + 30^{\circ}) = 70^{\circ}$ Now, $\angle AOC = 2\angle ABC = 2x70 = 140^{\circ}$
- (ii) Given,

 $\angle AOB = 90^{\circ}$, $\angle AOC = 110^{\circ}$ Here, OB = OC = OA (radius) As we know sum of all angles of circle be 360° Then, by adding angles. $\angle AOB + \angle AOC + \angle BOC = 360$ $90^{\circ} + 110^{\circ} + \angle BOC = 360^{\circ}$ $\angle BOC = 360 - 110 - 90$ $\angle BOC = 160^{\circ}$ Hence, $\angle BAC = \frac{1}{2} \angle BOC = \frac{1}{2} x160 = 80^{\circ}$

ANSWER2

Given, $\angle AOB = 70^{\circ}$ As we know that exterior angle is equal some of 2 angles then. $\angle AOB = \angle OCA + \angle OAC$ $\Rightarrow OA = OC (radius)$ $\therefore \angle OCA = \angle OAC$ We can calculate, the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

$$\angle OCA = \frac{1}{2} \angle AOB = \frac{1}{2} x70 = 35^{\circ}$$

Hence,
$$\angle OCA = \angle OAC = 35^{\circ}$$

ANSWER3

Given, O is the centre $\angle APB = 110^\circ$, $\angle PBC = 25^\circ$ In liner APC, $180 = \angle APB + \angle BPC$ $\angle BPC = 180 - 110 = 70^\circ$

CLASS IX

So, $\angle ACB = \angle PCB$ Then, In $\triangle CPB$ $\angle PCB = 180 - \angle PCB - \angle PBC$ $\angle PCB = 180 - 25 - 70 = 85^{\circ}$ Hence, $\angle PCB = \angle ACB$ Angle with same segment. $\angle ACB = \angle ADB = 85^{\circ}$

ANSWER4

Given, o is centre of the circle. $\angle ABD = 35^{\circ}$, $\angle BAC = 70^{\circ}$ By fig, $AD \perp AB$, $\angle A = 90^{\circ}$ Then, In $\triangle ADB$ $\angle DAB + \angle ADB + \angle DBA = 180^{\circ}$ $90^{\circ} + \angle ADB + 35^{\circ} = 180^{\circ}$ $\angle ADB = 180 - 90 - 35 = 55^{\circ}$ Angle with same segment $\angle ADB = \angle ACB = 55^{\circ}$

ANSWER5

Given, O is the centre of the circle. $\angle ACB = 50^{\circ}$ So, $\angle AOB = 2 \times \angle ACB = 2x50 = 100^{\circ}$ Then, let the radius be r, On the same segment $\angle OAB = \angle OBA = r^{\circ}$ In $\triangle AOB$ $\angle OAB + \angle OBA + \angle AOB = 180^{\circ}$ r + r + 100 = 180 2r = 180 - 100 = 80 $r = \frac{80}{2} = 40^{\circ}$

ANSWER6

Given, $\angle ABD = 45^{\circ}$, $\angle BCD = 43^{\circ}$ (i) As we know that angle on same segment are equals So, on chord AD $\angle ABD = \angle ACD = 54^{\circ}$ (ii) On chord BD $\angle DCB = \angle BAD = 43^{\circ}$

(iii) In $\triangle ABD$ $\angle BAD = \angle 43^{\circ}$, $\angle ABD = 54^{\circ}$ Sum of all the angles be 180° $\angle BAD + \angle ABD + \angle ADB = 180$ $54 + 43 + \angle ADB = 180$ $\angle ADB = 180 - 54 - 43$ $\angle ADB = 83^{\circ}$

Given , $AC || DE , \angle CBD = 60^{\circ}$ On same line segment chord CD $\angle DBC = \angle DAC = 60^{\circ}$ And $\angle ADC = 90^{\circ}$ angle is in semi circle. In $\triangle ADC$ As we know that sum of all the angles in the triangle 180 $\angle ADC + \angle DAC + \angle ACD = 180^{\circ}$ $\angle ADC + 60 + 90 = 180$ $\angle ADC = 180-60-90$ Hence, $\angle ADC = 30^{\circ}$

ANSWER8

Given, $AB \| CD, \angle ABC = 25^{\circ}$ Draw joining line OC and OD Here, $\angle ABC = \angle BCD = 25^{\circ}$[alternative int. angles] Then, arc BD makes $\angle BOD$ at the centre and $\angle BCD$ at a point on the circle. $\angle BOD = 2\angle BCD = 50^{\circ}$ Similary, $\angle AOC = 2\angle ABC = 50^{\circ}$ In liner segment AOB Sum of all the angles on the line segment is 180° Then, $\angle AOC + \angle COD + \angle BOD = 180^{\circ}$ $\angle COD + 50 + 50 = 180$ $\angle COD = 180 - 50 - 50 = 80^{\circ}$ Hence, similarly $\angle CED = \frac{1}{2} \square COD = 40^{\circ}$

ANSWER9

Given, $\angle AOC = 80^{\circ}$, $\angle CDE = 40^{\circ}$ (i) In $\triangle CDE$ Here, $\angle CDE = 90^{\circ}$ [with in semicircle make angle at 90°] So, $\angle CDE + \angle EDC + \angle DCE = 180$ $\angle DCE = 180 - 90 - 40 = 50^{\circ}$ Hence, $\angle DCE = 50^{\circ}$ (ii) In line segment AOB $\angle BOC = 180 - \angle AOC$ $\angle BOC = 180 - 80 = 100^{\circ}$ So, in $\triangle BOC$ $\angle BOC + \angle CBO + \angle OCB = 180^{\circ}$

$$\angle$$
CBO = 180 - \angle BOC - \angle OCB
 \angle CBO = 180 - 50 - 100 = 40°
Hence, \angle ABC = \angle CBO = 30°

Given, $\angle AOB = 40^{\circ}$, $\angle BDC = 100^{\circ}$ Here, $\angle ACB = \frac{1}{2} \angle AOB = \frac{1}{2}x40 = 20^{\circ}$ So, in $\triangle DBC$ $\angle DCB + \angle DBC + \angle CDB = 180^{\circ}$ $\angle DCB = 180 - \angle DBC + \angle CDB$ $\angle DCB = 180 - 100 - 20 = 60^{\circ}$ Hence, $\angle DCB = 60^{\circ}$

ANSWER11

Given $\angle OAB = 25^{\circ}$ Join OB we get radius of circle is same OB = OA and $\angle OAB = \angle OBA = 25^{\circ}$ Then, In $\triangle AOB$ $\angle AOB + \angle OAB + \angle ABO = 180^{\circ}$ $\angle AOB + 25 + 25 = 180^{\circ}$ $\angle AOB = 180 - 25 - 25$ $\angle AOB = 130^{\circ}$ As we know the angle subtended by a

As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

Then, $\angle ACB = \frac{1}{2} \angle AOB = \frac{1}{2} \times 130 = 65^{\circ}$ In $\triangle EBC$ So, $\angle CEB = 90^{\circ}$[by fig] $\angle CEB + \angle ECB + \angle CEB = 180$ $\angle EBC + 90 + 65 = 180^{\circ}$ $\angle EBC = 180 - 90 - 65$ $\angle EBC = 25^{\circ}$

ANSWER12

Given , $\angle OAB = 20^{\circ}$, $\angle OCB = 55^{\circ}$

(i) As we know that equal chords of a circles subtend equal angles at the centre Here, OC = OB (radius) and ∠OCB = ∠OBC = 55°
In △OCB
∠OCB +∠OBC +∠BOC = 180°
55° + 55° + ∠BOC = 180°
∠BOC = 180° - 55 - 55 = 70°

(ii) In $\triangle AOB$ OA = OB and $\angle OAB = \angle OBA$ Sum of all the angles is 180° $\angle AOB + \angle OAB + \angle OBA = 180^{\circ}$ $\angle AOB + 20 + 20 = 180$ $\angle AOB = 180 - 20 - 20 = 140^{\circ}$ And $\angle AOB = \angle BOC + \angle AOC$ $\angle AOC = \angle AOB - \angle BOC = 140 - 70$ Hence, $\angle AOC = 70^{\circ}$

Given $\angle BCO = 30^{\circ}$ And by fig, $\angle AOD = \angle OEC = 90^{\circ}...[$ corresponding angles] OD||BC, OC is trANSWERversal $\angle DOC = \angle OCE = 30^{\circ}....[alternative int angles]$ As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle. Then, $\angle CBD = \frac{1}{2} \angle COD = \frac{1}{2} \times 30 = 15^{\circ}$ Hence, $y = 15^{\circ}$ centre $\angle AOD = 90^{\circ}$ (given) And $\angle ABC = \frac{1}{2} \angle AOD = \frac{1}{2} \times 90 = 45^{\circ}$ In $\triangle ABE$ $\angle A = 180 \cdot \angle B \cdot \angle E$ $\angle A = 180 \cdot \angle B \cdot \angle E$ $\angle A = 180 - 90 - (45 + y^{\circ}) = 180 - 90 - (45 + 15)$ $\angle A = 180 - 90 - 60 = 30^{\circ}$

Hence, $\angle A = x = 30^{\circ}$

ANSWER14

Given, BD = OD , CD \perp AB Join CA By fig, BD = OD and OD = OB (radius of circle) BD = OD = OB [equilateral triangle] Sum of angles will be 180° in equilateral so, each angles is divided into 60° In \triangle DBO \angle DBO = \angle BDO = \angle BOD = 60° Since altitudes of an angle of an equilateral \triangle bisects the vertical angle So, \angle BDE = \angle ODE = 30° Angles on the segment will be equal , on segment of CB \angle CAB = \angle CDB = 30°

ANSWER15

Given PQ is diameter . $\angle PQR = 65^{\circ}$, $\angle SPR = 40^{\circ}$, $\angle PQM = 50^{\circ}$ In $\triangle QPR$, $\angle QRP = 90^{\circ}$ [angle in the semicircle is right angle] $\angle QRP + \angle QPR + \angle PQR = 180^{\circ}$ $\angle QPR = 180 - \angle QRP - \angle PQR$ $\angle QPR = 180 - 65 - 90$ Hence, $\angle QPR = 25^{\circ}$ $\Rightarrow \angle QPR = \angle PRS = 25^{\circ}$[alternative int angles] Similarly, $\triangle QPM$ $\angle QPM + \angle PMQ + \angle PQM = 180^{\circ}$ $\angle QPM + 50 + 90 = 180$ $\angle QPM = 180-50-90 = 40^{\circ}$ Hence, $\angle QPM = 40^{\circ}$

CLASS IX

Given, $\angle APB = 150^{\circ}$, join BC which is common chord of the angles As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

 $\therefore \angle ACB = \frac{1}{2} \angle APB = \frac{1}{2} \times 150 = 75^{\circ}$ In linear segment ACD $\angle ACB + \angle CBD = 180^{\circ}$ $\angle CBD = 180 - \angle ACB$ $\angle CBD = 180 - 75 = 105^{\circ}$ Similarly, in second circle $\angle BCD = \frac{1}{2}$ reflex $\angle BQD$ [angle made by the major arc BFD at the centre 2 $\angle BCD$]

 $105^{\circ} = \frac{1}{2}(360-x)$ ⇒ 210° = 360- x° ⇒ x° = 360-210 = 150°

ANSWER17

Given , $\angle BAC = 30^{\circ}$

As we know the angle subtended by arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

 $\angle BOC = 2 \angle ABC = 2 \times 30 = 60^{\circ}$

Here, OB = OC is radius of the circle Then, from above in $\triangle OBC$ Since, OB = OC (radius) $\angle OBC = \angle OCB$ Sum of all the angles is 180° $\angle OBC + \angle OCB + \angle BOC = 180^{\circ}$ $\angle OBC + \angle OBC = 180 - \angle BOC$ $2\angle OBC = 180 - 60 = 120$ $\angle OBC = 120/2 = 60^{\circ}$ Hence, $\triangle OBC$ is equilateral \triangle then, all the sides are equal too BC is equal to radius of the circumcircle.

ANSWER18

Join AC, BC , BD Given AB is the chord , And angle subtended by an arc CXA = $\angle AOC$, Angle subtended by arc DYB = $\angle DOB$ As we know the angle made by an arc at the centre is twice the angle made by this arc at a point on the remaining part of the circle. $\angle AOC = 2\angle ABC$ (1) Similarly , $\angle DOB = 2\angle DCB$ (2) Adding both equation $\therefore \angle AOC + \angle DOB = 2\angle ABC + 2\angle DCB = 2\angle AEC$ Hence, $\angle AEC = \frac{1}{2}(\angle AOC + \angle DOB)$

CLASS IX