Find the area of the region bounded by the curve y? = x and the lines x = 1, x = 4 and
the x-axis.

Answer
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The area of the region bounded by the curve, y? = x, the lines, x = 1 and x = 4, and the

x-axis is the area ABCD.

Area of ABCD = rl dx
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Find the area of the region bounded by y? = 9x, x = 2, x = 4 and the x-axis in the first

quadrant.
Answer
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The area of the region bounded by the curve, y* = 9x, x = 2, and x = 4, and the x-axis
is the area ABCD.

Area of ABCD = j‘ll vy
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Find the area of the region bounded by x*> = 4y, y = 2, y = 4 and the y-axis in the first
quadrant.

Answer
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The area of the region bounded by the curve, x*> = 4y, y = 2, and y = 4, and the y-axis
is the area ABCD.

Area of ABCD = _E.r dy
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Answer

The given equation of the ellipse, 16 9 , can be represented as
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It can be observed that the ellipse is symmetrical about x-axis and y-axis.

~ Area bounded by ellipse = 4 x Area of OAB

Area of OAB = _[ vy
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Therefore, area bounded by the ellipse = 4 x 3n = 12n units
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Find the area of the region bounded by the ellipse 4

Answer
The given equation of the ellipse can be represented as
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It can be observed that the ellipse is symmetrical about x-axis and y-axis.

~ Area bounded by ellipse = 4 x Area OAB



- Area of OAB = I._ ydx
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Therefore, area bounded by the ellipse =

Find the area of the region in the first quadrant enclosed by x-axis, line = "*EJ'"and the

circle ¥ TV =4

Answer

X4yt =4, x=3y

The area of the region bounded by the circle, , and the x-axis is the

area OAB.
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The point of intersection of the line and the circle in the first quadrant is

Area OAB = Area AOCA + Area ACB
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Find the area of the smaller part of the circle x*> + y? = a2 cut off by the line

Answer



[
X=—r
The area of the smaller part of the circle, x* + y? = a2, cut off by the line, V2 , is the

area ABCDA.
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It can be observed that the area ABCD is symmetrical about x-axis.

«~ Area ABCD = 2 x Area ABC



Area of ABC = [ ydx
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Therefore, the area of smaller part of the circle, x*> + y* = a°, cut off by the line, V2 ,
a [n I]
is 212 units.

Question 8:

The area between x = y? and x = 4 is divided into two equal parts by the line x = a, find
the value of a.

Answer

The line, x = a, divides the area bounded by the parabola and x = 4 into two equal

parts.



~ Area OAD = Area ABCD
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It can be observed that the given area is symmetrical about x-axis.

= Area OED = Area EFCD



Area OED = | ydx
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From (1) and (2), we obtain
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Therefore, the value of a is {4} .

Find the area of the region bounded by the parabola y = x* and y= |1|
Answer

The area bounded by the parabola, x> = y,and the Iine,'v - |1'| , can be represented as
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The given area is symmetrical about y-axis.

« Area OACO = Area ODBO

The point of intersection of parabola, x* = y, and line, y = x, is A (1, 1).
Area of OACO = Area AOAB - Area OBACO

CoArea of AOAR =%XDBXF&B=%XIX] =
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= Area of OACO = Area of AOAB - Area of OBACO

Therefore, required area = L6 units



Find the area bounded by the curve x*> = 4y and the line x = 4y - 2

Answer

The area bounded by the curve, x> = 4y, and line, x = 4y - 2, is represented by the
shaded area OBAO.
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Let A and B be the points of intersection of the line and parabola.

o
A are —L—J
Coordinates of point o4

Coordinates of point B are (2, 1).

We draw AL and BM perpendicular to x-axis.
It can be observed that,

Area OBAO = Area OBCO + Area OACO ... (1)
Then, Area OBCO = Area OMBC - Area OMBO
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Similarly, Area OACO = Area OLAC - Area OLAO
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Therefore, required area = 6 24 8

Question 11:

Find the area of the region bounded by the curve y* = 4x and the line x = 3

Answer

The region bounded by the parabola, y? = 4x, and the line, x = 3, is the area OACO.
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The area OACO is symmetrical about x-axis.

= Area of OACO = 2 (Area of OAB)

Area OACO =2 L ¥ a’x}

=2 f?x-"';n’x

Therefore, the required area is S‘E units.

Area lying in the first quadrant and bounded by the circle x> + y* = 4 and the lines x = 0

and x =2 is
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Answer

The area bounded by the circle and the lines, x = 0 and x = 2, in the first quadrant is

represented as
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Thus, the correct answer is A.



Area of the region bounded by the curve y? = 4x, y-axis and the liney = 3 is
A.2
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Answer

The area bounded by the curve, y? = 4x, y-axis, and y = 3 is represented as

1
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Thus, the correct answer is B.



Find the area of the circle 4x* + 4y? = 9 which is interior to the parabola x*> = 4y
Answer

The required area is represented by the shaded area OBCDO.

b

Solving the given equation of circle, 4x* + 4y? = 9, and parabola, x* = 4y, we obtain the

-| b I-" -| b
B [\E— | and D | -2, |
point of intersection as 2) , 2) .
It can be observed that the required area is symmetrical about y-axis.

~ Area OBCDO = 2 x Area OBCO

We draw BM perpendicular to OA.
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Therefore, the coordinates of M are .
Therefore, Area OBCO = Area OMBCO - Area OMBO
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Therefore, the required area OBCDO is
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Question 2:

Find the area bounded by curves (x - 1)> + y* =1and x> + y% =1

Answer

The area bounded by the curves, (x - 1)> + y* = 1 and x> + y2 = 1, is represented by

the shaded area as
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On solving the equations, (x - 1)> + y> = 1 and x> + y? = 1, we obtain the point of

o
i
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272 27 2
intersection as A* ‘and B* /

It can be observed that the required area is symmetrical about x-axis.

~ Area OBCAO = 2 x Area OCAO

We join AB, which intersects OC at M, such that AM is perpendicular to OC.

1
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The coordinates of M are "2 )



= Area OCAQ = Area OMAO + Area MCAM

Therefore, required area OBCAO = p

Question 3:
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Find the area of the region bounded by the curvesy = x>+ 2,y = x, x = 0 and x = 3

Answer

The area bounded by the curves, y = x>+ 2, y = x, x = 0, and x = 3, is represented by

the shaded area OCBAO as
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Then, Area OCBAO = Area ODBAO - Area ODCO
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Using integration finds the area of the region bounded by the triangle whose vertices are
(-1, 0), (1, 3) and (3, 2).

Answer

BL and CM are drawn perpendicular to x-axis.

It can be observed in the following figure that,

Area (AACB) = Area (ALBA) + Area (BLMCB) - Area (AMCA) ... (1)



Equation of line segment AB is
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Equation of line segment AC is
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Therefore, from equation (1), we obtain



Area (AABC) = (3 + 5 - 4) = 4 units

Using integration find the area of the triangular region whose sides have the equations y
=2x+1,y =3x+ 1and x = 4.

Answer

The equations of sides of the triangle arey = 2x +1, y = 3x + 1, and x = 4.

On solving these equations, we obtain the vertices of triangle as A(0, 1), B(4, 13), and C
(4, 9).

B4, 13)

It can be observed that,
Area (AACB) = Area (OLBAQ) -Area (OLCAO)
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Smaller area enclosed by the circle x> + y> = 4 and the linex + y = 2 is
A.2(n-2)



B.n-2

C.2n-1

D.2(n+2)

Answer

The smaller area enclosed by the circle, x*> + y*> = 4, and the line, x + y = 2, is

represented by the shaded area ACBA as

It can be observed that,
Area ACBA = Area OACBO - Area (AOAB)
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Thus, the correct answer is B.

Area lying between the curve y? = 4x and y = 2x is
2
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The area lying between the curve, y? = 4x and y = 2x, is represented by the shaded
area OBAO as
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The points of intersection of these curves are O (0, 0) and A (1, 2).

We draw AC perpendicular to x-axis such that the coordinates of C are (1, 0).

~ Area OBAO = Area (AOCA) - Area (OCABO)
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Thus, the correct answer is B.



Find the area under the given curves and given lines:
(i) y = x>, x = 1, x = 2 and x-axis
(i) y = x*, x = 1, x = 5 and x -axis
Answer
i. The required area is represented by the shaded area ADCBA as
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Area ADCBA = [" yav
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ii. The required area is represented by the shaded area ADCBA as
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Find the area between the curves y = x and y = x?

Answer
The required area is represented by the shaded area OBAO as
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The points of intersection of the curves, y = x and y = x?, is A (1, 1).

We draw AC perpendicular to x-axis.

~ Area (OBAO) = Area (AOCA) - Area (OCABO) ... (1)
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Find the area of the region lying in the first quadrant and bounded by y = 4x, x = 0, y
=landy =4



Answer
The area in the first quadrant bounded by y = 4x?>, x =0,y = 1,and y = 4 is
represented by the shaded area ABCDA as
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I
= X+ 3l
Sketch the graph of J |x+3| and evaluate L‘|r+ Idr

Answer



The given equation is -

v =|x+3|

The corresponding values of x and y are given in the following table.

x|-6|-5|-4]-3

-2

-1

0

y|l 3 2 1 0

On plotting these points, we obtain the graph of r=
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It is known that,
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|x N 3| as follows.

(x+3)<0for —6<x<-3and (x+3)20for —3<x<0

(500



Find the area bounded by the curve y = sin x between x = 0 and x = 2n

Answer
The graph of y = sin x can be drawn as

h

¥

~ Required area = Area OABO + Area BCDB

= rsin xn’r+‘f“ sin x oy
=[-cos r]u +‘[—c05x]i“|
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Find the area enclosed between the parabola y*> = 4ax and the line y = mx

Answer
The area enclosed between the parabola, y* = 4ax, and the line, y = mx, is represented

by the shaded area OABO as
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The points of intersection of both the curves are (0, 0) and mem

We draw AC perpendicular to x-axis.

= Area OABO = Area OCABO - Area (AOCA)
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Find the area enclosed by the parabola 4y = 3x% and the line 2y = 3x + 12
Answer
The area enclosed between the parabola, 4y = 3x?, and the line, 2y = 3x + 12, is

represented by the shaded area OBAO as
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The points of intersection of the given curves are A (-2, 3) and (4, 12).

We draw AC and BD perpendicular to x-axis.

= Area OBAO = Area CDBA - (Area ODBO + Area OACO)
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Find the area of the smaller region bounded by the ellipse 9 4 and the line
3 2

Answer

The area of the smaller region bounded by the ellipse, 9 4 , and the line,



~ Area BCAB = Area (OBCAQO) - Area (OBAO)
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Find the area of the smaller region bounded by the ellipse a b and the line
a b
Answer
I: + }I: =1

The area of the smaller region bounded by the ellipse, # b , and the line,
a b , is represented by the shaded region BCAB as

AY

(1, f)
A

Y

il
-

~ Area BCAB = Area (OBCAOQO) - Area (OBAO)
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Find the area of the region enclosed by the parabola x*> = y, the liney = x + 2 and x-
axis

Answer

The area of the region enclosed by the parabola, x* = y, the line, y = x + 2, and x-axis

is represented by the shaded region OABCO as



X
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v

The point of intersection of the parabola, x*> = y, and the line, y = x + 2, is A (-1, 1).

- Area OABCO = Area (BCA) + Area COAC

1 %
= L {x+ 2]5!x+ E X ddx
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4+ =
Using the method of integration find the area bounded by the curve .r| |*l 1

[Hint: the required region is bounded by linesx+y =1, x-y=1,-x+y=1and - x
-y=11]
Answer

vl =
The area bounded by the curve, .r| | , is represented by the shaded region ADCB
as

The curve intersects the axes at points A (0, 1), B (1, 0), C (0, -1), and D (-1, 0).

It can be observed that the given curve is symmetrical about x-axis and y-axis.

~ Area ADCB = 4 x Area OBAO



Find the area bounded by curves {['T’J;}:'V 2x" and y =|x|}

Answer

{[,r,y}:y =x" and y =|,r|]

The area bounded by the curves, , is represented by the

shaded region as
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It can be observed that the required area is symmetrical about y-axis.

Required area = ZEArca [DL‘AD]—hrca{DCADD]]

=2 _Exaf'c— _cxlcb::|

1]

(]
1
ra |,
[

|
1
L=,
e,

Il

g8
b | =

|
) | —
| I— |

Using the method of integration find the area of the triangle ABC, coordinates of whose
vertices are A (2, 0), B (4, 5) and C (6, 3)



Answer
The vertices of AABC are A (2, 0), B (4, 5), and C (6, 3).
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Y

¥

Equation of line segment AB is

Equation of line segment BC is

3-5
—5=——(x-4
y=5=gg (x4
2y—10=-2x+8§
2y=-2x+18

y=-x+9 .(2)

Equation of line segment CA is
0-3

=3= x-6

y-3=-—(x-6)

—4yp+12=-3x+18

dy=3x-6

y=2(:-2) -(3)



Area (AABC) = Area (ABLA) + Area (BLMCB) - Area (ACMA)
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3
=5+8-=(8

=13-6
=7 units

Question 14:

Using the method of integration find the area of the region bounded by lines:
2Xx+y=4,3x-2y=6andx-3y+5=0

Answer

The given equations of lines are

2x+y=4..(1)

3x -2y =6..(2)

And, x -3y +5=0..(3)

\l\j r—y=1




The area of the region bounded by the lines is the area of AABC. AL and CM are the
perpendiculars on x-axis.
Area (AABC) = Area (ALMCA) - Area (ALB) - Area (CMB)

r i 'TJ: S}.r’x - br[efl—lr}a’.r - ‘E[ E'T;ﬁ}lx
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)t <dx,dx’ +4y7 <9l
Find the area of the region {{ ) ] ¥ by f

Answer

{{'T’J"] 1P £4x,4x" +4y7 <9)

The area bounded by the curves, ! is represented as
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The points of intersection of both the curves are[
The required area is given by OABCO.
It can be observed that area OABCO is symmetrical about x-axis.

~ Area OABCO = 2 x Area OBC

Area OBCO = Area OMC + Area MBC

3
fp 304
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|
= ‘LJE\.""J._' dv + Em‘@—flx“ e

-
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Area bounded by the curve y = x>, the x-axis and the ordinates x = -2 and x = 1 is
A.-9

15
B. 4



C.
17
p. 4
Answer
Ya o
y=x
gl b
= | C 0 -
X A X
-2, 5D
v ¥
K==2 x=1

Required area = [ velx

’r? v

[I —4]=—|5 units
4 4

Thus, the correct answer is B.

? X
The area bounded by the curve Y | |, x-axis and the ordinates x = -1and x =1 is
given by

[Hint: y = x’if x >0and y = -x* if x < 0]
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Thus, the correct answer is C.



The area of the circle x?> + y? = 16 exterior to the parabola y? = 6x is
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Answer

The given equations are
X+ y*=16..(1)
y? =6x..(2)

Area bounded by the circle and parabola
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Thus, the correct answer is C.



The area bounded by the y-axis, y = cos x and y = sin x when
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Answer

The given equations are
y = CoS X ... (1)

And, y = sin x ... (2)
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Integrating by parts, we obtain
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Thus, the correct answer is B.
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Therefore, the required area is *



