SAMPLE QUESTION PAPER

Summative Assessment – II

Class – X (2015–16)

Mathematics - Marking Scheme

Section A

Ans 1 . K = 3	[1]
Ans 2 . √200	[1]
Ans 3 . 47/50	[1]
Ans 4 . a= - 9	[1]

Section B

Ans 5.	
2 is the root of x ² +kx+12=0	
⇒(2) ² + 2k+12=0	
\Rightarrow 2k+16=0	
k=-8	[1/2]
Put k=-8 in x ² +kx+q=0	
\Rightarrow x ² -8x+q=0	[1/2]
For equal roots	
(-8) ² -4 (1)q=0	[1/2]
64 -4q =0	
4q = 64	
q = 16	[1/2]

Ans 6.

Two digit numbers which are divisible by 7 are

14,21,28,98.	[1/2]
It forms an A.P.	
a=14, d=7, a _n =98	[1/2]
a _n =a+(n-1) d	
98=14+(n-1)7	[1/2]
98-14=7n-7	
84+7=7n	
7n=91	
n=13	[1/2]

Ans 7

Let P(x,y) is equidistant from A(-5,3) and B(7,2)

AP=BP	[1/2]
$\Rightarrow \sqrt{((x+5)^2 + (y-3)^2)} = \sqrt{((x-7)^2 + (y-2)^2)}$	
$\Rightarrow x^2 + 10x + 25 + y^2 - 6y + 9 = x^2 - 14x + 49 + y^2 - 4y + 4$	[1/2]

10x-6y+34 = -14x-4y+53	
10x+14x-6y+4y = 53-34	
24x-2y = 19	
24x - 2y - 19 = 0 is the required relation	[1]

Perimeter of the shaded region	
= AD+ BC + lengths of semi circles APB&CPD	[1]
= 21+21+2(2x—x —)	[1/2]
= 42+2(66)	
= 42+ 132	
=174 cm	[1/2]

Ans 9

Let the water level raised in cylindrical vessel be h cm	
Volume of Sphere = Volume of water displaced in cylinder	[1/2]
$-\pi (3)^3 = \pi (6)^2 h$	[1]

–x27 = 36 h	
36 = 36h	
h = 1cm	[1/2]
Ans 10	
Volume of Coin = π r ² h	
$=\frac{22}{10}$ x(0.75) ² x0.2 cm ³	[1/2]
Volume of Cylinder = $\frac{22}{2}$ x(2.25) ² x10 cm ³	[1/2]
No. of Coins = Volume of Cylinder / Volume of Coin	[1/2]
$= (\frac{22}{2}x(2.25)^2 \times 10) / (\frac{22}{2}x(0.75)^2 \times 0.2)$	
=450	[1/2]

Section C

Ans	1	1
-----	---	---

= _ + _ + _	
⇒	[1/2]
⇒ =	[1/2]
⇒ =	
⇒ =	[1/2]
\Rightarrow x(a + b + x) = - ab	
$\Rightarrow x^2 + (a+b)x - ab = 0$	
\Rightarrow (x+a)(x+b) = 0	[1]
\Rightarrow x = -a or x = -b	[1/2]

Let the first term of A.P be a and common difference be d.

$$a_{9}=7a_{2}$$

$$\Rightarrow a+8d = 7 (a+d) \qquad [1/2]$$

$$a_{12} = 5a_{3}+2$$

$$\Rightarrow a + 11d = 5 (a + 2d) + 2 \qquad (2) \qquad [1]$$
From (1), $a + 8d = 7a + 7d$

$$-6a + d = 0 \qquad (3)$$
From (2), $a + 11d = 5a + 10d + 2$

$$-4a + d = 2 \qquad (4)$$
Subtracting (4) from (3)
$$-2a = -2$$

$$\Rightarrow a = 1 \qquad [1]$$
From (3),
$$-6 + d = 0 \qquad [1/2]$$
Ans 14

Join OD and AE

[1/2]

point of contact)	
$\angle AEB = 90^{\circ}$ (angle in a semicircle)	
OD AE (Corresponding Angles)	[1/2]
AE = 2 x OD	
= 2 x 8 = 16 cm	[1/2]
In right \triangle ODB, BD ² = 13 ² - 8 ²	[1/2]
= 169-64 = 105	
BD = $\sqrt{105}$ cm	
$DE = \sqrt{105}$ cm	[1/2]
In right \triangle AED, AD ² = AE ² + DE ²	

 $=16^{2} + (\sqrt{105})^{2}$ =256+105 = 361AD = 19 cm

[1/2]

Ans15

[1/2]

In right $\triangle PQR$, by Pythagoras theorem

 $PQ^2 = PR^2 + PQ^2$

$\Rightarrow 17^2 = (x+9)^2 + (x+2)^2$	[1]
$\Rightarrow x^2 + 11x - 102 = 0$	[1/2]
$\Rightarrow x^2 + 17x - 6x - 102 = 0$	
$\Rightarrow x(x+17) - 6(x+17) = 0$	
\Rightarrow (x-6)(x+17) = 0	
\Rightarrow x = 6 or x = -17	[1/2]
\Rightarrow x = 6 cm (x can't be negative)	[1/2]
Ans 16	
For correct construction	[3]
Ans 17	
Total number of cards = 52	
Number of non face cards = $52 - 12$	
= 40	
P(non-face cards) = $\frac{40}{52} = \frac{10}{13}$	[1]
Number of black kings = 2	
Number of red queens = 2	
P(a black King or a red queen) = $\frac{4}{52}$	[1]
Number of spade cards = 13	
P (Spade cards) = $\frac{13}{52}$	[1]

$$\angle AOB = 60^{\circ}$$
 [1/2]

Area of shaded region

= Area of
$$\triangle AOB$$
 + Area of major sector of circle [1]

$$= \frac{\sqrt{3}}{4} (12)^2 + \frac{300^0}{360^0} \times \frac{22}{7} \times (6)^2 \text{ cm}^2$$
 [1]

$$= 36\sqrt{3} + \frac{660}{7} \text{ cm}^2$$
 [1/2]

Ans 19

Length of water that flows out in 30 minutes

Volume of water that flows out in 30 minutes

=
$$\pi (1)^2 \times 126000 \text{ cm}^3$$

= 126000 $\pi \text{ cm}^3$ [1/2]

Let the depth of water in the tank be x cm

Volume of water in tank

$$= \pi (40)^2 X x cm^3$$
 [1/2]

According to the question

$$\pi (40)^2 X x = 126000\pi$$
 [1/2]

 \Rightarrow x = 78.75 cm [1/2]

Ans 20

Let R and r be the radii of the circular ends of the frustum. (R> r)

$$2\pi R = 207.24$$

R = 207.24/ (2 X 3.14)
R = 33 cm [1]

$$2\pi r = 169.56 cm$$

r = 169.56 / (2 X 3.14)
r = 27 cm [1/2]
l² = h² + (R-r)²
= 8² + (33-27)² [1/2]

Whole surface area of the frustum

$$= \pi (R^{2} + r^{2} + (R+r)I)$$

$$= 3.14 ((33)^{2} + (27)^{2} + (33+27)10)$$

$$= 3.14 (1089 + 729 + 600)$$

$$= 3.14 X 2418 cm^{2}$$

$$= 7592.52 cm^{2}[1]$$

Section D

Ans 21

Let the total number of students be x

$$\frac{3}{8}x = 16 + \sqrt{x}$$

$$\Rightarrow \frac{3}{8}x - 16 = \sqrt{x}$$

$$\Rightarrow 3x - 128 = 8\sqrt{x}$$
[1]

[1/2]
[1/2]
[1]
[1]
[1/2]
[1/2]
[1]
[1]
[1]

In the given figure,

Using the above theorem

An	ns 24	
\Rightarrow	AB +CD = AD + BC	[1]
(A	B+BP) + (DR+CR) = (AS+DS) + (BQ+CQ)	
Ad	lding (1), (2),(3) and (4), we get	
	CR = CQ(4)	[1]
	DR = DS(3)	
	BP = BQ(2)	
	AP = AS(1)	

For correct constructions [4]

Correct diagram	[1]
In right ∆ADC	
$\tan 30^\circ = \frac{CD}{AD}$	[1/2]
$\Rightarrow \frac{1}{\sqrt{3}} = \frac{100}{x}$	
\Rightarrow x = 100 $\sqrt{3}$ (1)	[1/2]
In right ∆BDC	
$\tan 45^\circ = \frac{CD}{DB}$	[1/2]
$\Rightarrow 1 = \frac{100}{y}$	[1/2]
⇒ y = 100 m	
Distance between two cars	
= AB = AD + DB	[1/2]

[1/2]

Ans 26

= (100 √3 + 100)m

= (173 + 100) m

= 273 m

= (100 X 1.73 + 100)m

Let BC be building of height 20m and CD be the tower of height h m. Let A be point on the ground at a distance of x m from the foot of the building. [1] In right Δ ABC,

$$\tan 45^{\circ} = \frac{BC}{AB}$$

$$\Rightarrow 1 = \frac{20}{X}$$

$$\Rightarrow x = 20m \dots(1) \qquad [1]$$

$$\ln right \Delta ABD, \qquad [1]$$

$$\tan 60^{\circ} = \frac{BD}{AB}$$

$$\Rightarrow \sqrt{3} = \frac{h+20}{X}$$

$$\Rightarrow \sqrt{3} = \frac{h+20}{20} \qquad [1]$$

$$\Rightarrow h = 20 \sqrt{3} - 20$$

$$= 20 (\sqrt{3} - 1)$$

$$= 20 \times 0.732$$

$$= 14.64 m$$
Height of tower = 14.64 m [1]

Total number of cards = 48

Probability of an event =
$$\frac{Total number of favourable outcomes}{Total number of outcomes}$$
[1]

Number of cards divisible by 7 = 7

P(cards divisible by 7) =
$$\frac{7}{48}$$
 [1]

Number of cards having a perfect square = 6

P(cards having a perfect square) =
$$\frac{6}{48} = \frac{1}{8}$$
 [1]

Number of multiples of 6 from 3 to 50 = 8

P (multiple of 6 from 3 to 50) =
$$\frac{8}{48} = \frac{1}{6}$$
 [1]

Ans 28

By Section formula $\frac{2(9q)+1(3q+1)}{2}$

From (2)

$$-b = \frac{15-3}{4} = 3$$

 $b = -3$ [1]

$$9a - 2 = \frac{24 a + 3a + 1}{4}$$

$$4 (9a - 2) = 27a + 1$$

$$36a - 8 = 27a + 1$$

$$9a = 9$$

$$a = 1$$
[1]

Ans 29

Let $P(x_1, y_1)$ and $Q(x_2, y_2)$ are two points which divide AB in three equal parts. By Section formula

$$P(x_{1}, y_{1}) = \left(\frac{1X(-4)+2X(2)}{1+2}, \frac{1X(-6)+2X(-3)}{1+2}\right)$$

$$= \left(\frac{-4+4}{3}, \frac{-6+(-6)}{3}\right)$$

$$= (0, -4)$$
[1]

$$Q(x_2, y_2) = \left(\frac{2X(-4)+1X(2)}{2+1}, \frac{2X(-6)+1X(-3)}{2+1}\right)$$
[1]
= $\left(\frac{-8+2}{3}, \frac{-12+(-3)}{3}\right)$
= $(-2, -5)$ [1]

Let r cm be the radius of each circle.

Area of square – Area of 4 sectors =
$$\frac{24}{7}$$
 cm² [1/2]

$$(2r)^2 - 4\left(\frac{90^0}{360^0} \times \pi r^2\right) = \frac{24}{7}$$
 [1]

$$\Rightarrow \qquad 4r^2 - \frac{22}{7}r^2 = \frac{24}{7} \qquad [1/2]$$

 $\Rightarrow \frac{28r^2 - 22r^2}{7} = \frac{24}{7}$ $\Rightarrow \qquad 6r^2 = 24$ $\Rightarrow \qquad r^2 = 4$ [1]

$$\Rightarrow$$
 r = ± 2

 \Rightarrow radius of each circle is 2 cm (r cannot be negative) [1]

Ans 31

 \Rightarrow

In right∆ BAC, by Pythagoras theorem $BC^2 = AB^2 + AC^2$ $= 15^2 + 20^2$ = 225 + 400 = 625 BC = 25cm [1/2] Let OA = y cm and OB = x cm $x^2+y^2 = 15^2$ [1/2] $(25-x)^2 + y^2 = 20^2$ [1/2] Solving we get x=9 and y=12 [1/2] \therefore OA= 12 cm and OB = 9 cm Volume of double cone = $\frac{1}{3}\pi$ (OA)² X OC + $\frac{1}{3}\pi$ (OA)² X OB $=\frac{1}{3}$ X 3.14 X (12)² X (OC + OB) [1/2] $= \frac{1}{3} \times 3.14 \times 144 \times 25$ = 3768 cm³ [1/2] Surface area of double cone = π X OA X AC + π X OA X AB $= \pi X 12 X 20 + \pi X 12 X 15$ [1/2] = 420 π cm²

$$= 1318.8 \text{ cm}^2$$
 [1/2]