CSVTU Exam Papers Engineering Mechanics Dec 2007

CSVTU Exam Papers

Engineering Mechanics Dec 2007

1. (a) Explain Virginian’s theorem.

(b) Solve any two parts:

(i) Two rollers of weight P and Q are connected by a flexib string AB. The rollers rests on two mutually perpendicul planes DE and EF as shown. Find the tension in the strir angle 0 that it makes with the horizontal when the system in equilibrium.


(ii) A uniform beam AB of weight W = 100N . Rests on two r< supports C and D as shown if force of 250 N is applied tc end B find the range of the values of force F for which b< will remain in equilibrium


(iii) Four forces acts on a plate as shown (a) find the resultafit these forces, (b) Locate the two points where the lin! action of resultant intersects the edge of the plate.


Q.2.(a) What is shear force and bending moment and what relation between them.

(b) Solve any two parts :

(i) Determine the forces in each member of the truss shown.

(ii) Determine the forces in members BD and DE of the shown.


(iii) Draw the shear and bending moment of diagram for the beam and loading shown.


Q.3.(a) Find the relation between the tension of a belt and prove that Where T1 = Tension of tight side,

u=Coefficient of prism, T2 = Tension on loose side p — Angle of overlap. T1/T2=ei0

(b) Solve any two parts :

(i) Two identical planes AC and BC inclined 60° and 30° tc the horizontal meet at JC. A load of 1000N rests on the inclined plane BC and it tied by a rope passing over a pulley to a block weighing W Newton’s and resting on the plane AC as shown . If the coefficient of friction the block and plane AC is 0.02 find the least and the greatest value of W foi equilibrium of the system.


(ii) Determine the force P required to start the movement of the wedge as shown. The angle friction for all surfaces in contact is 15*


(iii) Find the number of rope required to transmit 50KW. The maximum permissible tension in the rope is 1500 N. Velocity of the rope is 10m/sec and weright of the rope is 4N/m. Assume the angles of contact is 180* and pulley groove angle as 60*.

Q.4.(a) What is parallel axis theorem?

(b) Solve any two parts:-

(i) Determine the moment if inertia of the shaded area shown with the respect to each of the coordinate axes.


(ii) Determine the product of inertia of the figure:-

(iii) Determine the moment if inertia of a right circular respect to (i) Longitudinal axis, (ii) an axis centurion of the cone and to the longitudinal axis.

Q.5.(a) What is principle of work energy ?

(b) Solve any two parts :

(i) Two blocks A and B are released from rest when they are 18m apart. The coefficient of friction under block A is 0.2 and that under lower block B is 0.4 .” In what time block A strikes block B and where w. = 100 N, w„ = 80 N


(ii) A 3000N block starting from rest as shown slides down an incline after moving 2m it strikes a spring whose modules is 20N/mm. If the coefficient of friction between the block and the incline is 0.2 determine the maximum deformation of the spring and the maximum velocity of block.


(iii) Determine the time required for the weights shown in fig. to attain a velocity of 9.81 m/sec. What is the tension in the chord ? Take = 0.2 for both planes. Assume pulls are frictionless.


Leave a Comment