A Course in Abstract Algebra

By V.K. Khanna & S.K Bhamri more
Selling Price : ₹425.25
MRP : ₹525.00
You will save : ₹99.75 after 19% Discount

Add to Wish List

Save extra with 3 Offers

Get ₹ 50

Instant Cashback on the purchase of ₹ 400 or above
SAVE10 Already Applied


Get Flat 50% Off on your First Order

Product Specifications

Publisher Vikas Publishing All Mathematics books by Vikas Publishing
ISBN 9789325969001
Author: V.K. Khanna & S.K Bhamri
Number of Pages 789
Edition Fourth Edition
Available in all digital devices
  • Snapshot
  • About the book

A Course In Abstract Algebra by V.K. Khanna & S.K Bhamri
Book Summary:

Designed for undergraduate and postgraduate students of mathematics the book can also be used by those preparing for various competitive examinations. The text starts with a brief introduction to results from set theory and number theory. It then goes on to cover groups, rings, vector spaces (Linear Algebra) and fields. The topics under Groups include subgroups, permutation groups, finite abelian groups, Sylow theorems, direct products, group actions, solvable and nilpotent groups. The course in Ring theory covers ideals, embedding of rings, euclidean domains, PIDs, UFDs, polynomial rings, irreducibility criteria, Noetherian rings. The section on vector spaces deals with linear transformations, inner product spaces, dual spaces, eigen spaces, diagonalizable operators etc. Under fields, algebraic extensions, splitting fields, normal and separable extensions, algebraically closed fields, Galois extensions and construction by ruler and compass are discussed.

The theory has been strongly supported by numerous examples and worked out problems. There is also plenty of scope for the readers to try and solve problems on their own.

Audience of the Book :
This book Useful for CAT, Bank PO, UPSC, Aptitude, Mathematics, IAS Students .
Key Features:

The main features of the book are as follows:

1.Learning Objectives and Summary with each chapter

2.A large number of additional worked-out problems and examples.

3.Alternate proofs of some theorems and lemmas.

4.Reshuffling/Rewriting of certain portions to make them more reader friendly.